Skip to main content

Spatio-Temporal Atlas of Normal Fetal Craniofacial Feature Development and CNN-Based Ocular Biometry for Motion-Corrected Fetal MRI

  • 944 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12959)

Abstract

Motion-corrected fetal magnetic resonance imaging (MRI) is widely employed in large-scale fetal brain studies. However, the current processing pipelines and spatio-temporal atlases tend to omit craniofacial structures, which are known to be linked to genetic syndromes. In this work, we present the first spatio-temporal atlas of the fetal head that includes craniofacial features and covers 21 to 36 weeks gestational age range. Additionally, we propose a fully automated pipeline for fetal ocular biometry based on a 3D convolutional neural network (CNN). The extracted biometric indices are used for the growth trajectory analysis of changes in ocular metrics for 253 normal fetal subjects from the developing human connectome project (dHCP).

Keywords

  • Motion-corrected fetal MRI
  • Craniofacial features
  • Ocular measurements
  • Spatio-temporal atlas
  • Automated biometry

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-87735-4_16
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-87735-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. 1.

    dHCP project: http://www.developingconnectome.org/project.

  2. 2.

    MIRTK library: https://github.com/BioMedIA/MIRTK.

  3. 3.

    PyTorch: https://pytorch.org.

  4. 4.

    SVRTK fetal and neonatal MRI data repository: https://gin.g-node.org/SVRTK.

  5. 5.

    SVRTK fetal and neonatal MRI data repository: https://gin.g-node.org/SVRTK.

References

  1. Ami, O., et al.: 3D magnetic resonance imaging of fetal head molding and brain shape changes during the second stage of labor. PLoS ONE 14(5) (2019)

    Google Scholar 

  2. Arangio, P., et al.: Importance of fetal MRI in evaluation of craniofacial deformities. J. Craniofac. Surg. 24(3), 773–776 (2013)

    CrossRef  Google Scholar 

  3. Avisdris, N., et al.: Automatic fetal ocular measurements in MRI. In: ISMRM 2021, p. 1190 (2021)

    Google Scholar 

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    CrossRef  Google Scholar 

  5. Cordero-Grande1, L., et al.: Automating motion compensation in 3T fetal brain imaging: localize, align and reconstruct. In: ISMRM 2019, p. 1000 (2019)

    Google Scholar 

  6. Ebner, M., et al.: An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. Neuroimage 206(Oct.) (2020)

    Google Scholar 

  7. Ettema, A., et al.: Prenatal diagnosis of craniomaxillofacial malformations: a characterization of phenotypes in trisomies 13, 18, and 21 by ultrasound and pathology. Cleft Palate-Craniofac. J. 47(2), 189–196 (2010)

    Google Scholar 

  8. Gholipour, A., et al.: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Nat. Sci. Rep. 7(476), 1–13 (2017)

    MathSciNet  Google Scholar 

  9. Grigorescu, I., et al.: Harmonized segmentation of neonatal brain MRI. Front. Neurosci. 15, 565 (2021)

    CrossRef  Google Scholar 

  10. Khalili, N., et al.: Automatic brain tissue segmentation in fetal MRI using convolutional neural networks. Magn. Reson. Imaging 64, 77–89 (2019)

    CrossRef  Google Scholar 

  11. Kuklisova-Murgasova, M., et al.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. MedIAn 16(8), 1550–1564 (2012)

    Google Scholar 

  12. Kul, S., et al.: Contribution of MRI to ultrasound in the diagnosis of fetal anomalies. J. Magn. Reson. Imaging 35(4), 882–890 (2012)

    CrossRef  Google Scholar 

  13. Kyriakopoulou, V., et al.: Normative biometry of the fetal brain using magnetic resonance imaging. Brain Struct. Funct. 222(5), 2295–2307 (2016). https://doi.org/10.1007/s00429-016-1342-6

    CrossRef  Google Scholar 

  14. Makropoulos, A., et al.: The dHCP: a minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage 173, 88–112 (2018)

    CrossRef  Google Scholar 

  15. Mossey, P., Castilla, E.E.: Global registry and database on craniofacial anomalies Report of a WHO Registry Meeting on Craniofacial Anomalies Human Genetics Programme Management of Noncommunicable Diseases (2003)

    Google Scholar 

  16. Payette, K., Kottke, R., Jakab, A.: Efficient multi-class fetal brain segmentation in high resolution MRI reconstructions with noisy labels. In: Hu, Y., et al. (eds.) ASMUS/PIPPI -2020. LNCS, vol. 12437, pp. 295–304. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60334-2_29

    CrossRef  Google Scholar 

  17. Pérez-García, F., et al.: TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. arXiv (March 2020)

    Google Scholar 

  18. Price, A., et al.: The developing Human Connectome Project (dHCP): fetal acquisition protocol. In: ISMRM 2019 (2019)

    Google Scholar 

  19. Robinson, A.J., et al.: MRI of the fetal eyes: morphologic and biometric assessment for abnormal development with ultrasonographic and clinicopathologic correlation. Pediatr. Radiol. 38(9), 971–981 (2008)

    Google Scholar 

  20. Schuh, A., et al.: Unbiased construction of a temporally consistent morphological atlas of neonatal brain development. bioRxiv (2018)

    Google Scholar 

  21. Velasco-Annis, C., et al.: Normative biometrics for fetal ocular growth using volumetric MRI reconstruction. Prenat. Diagn. 35(4), 400–408 (2015)

    CrossRef  Google Scholar 

  22. Wright, R., et al.: LSTM spatial co-transformer networks for registration of 3D fetal US and MR brain images. MICCAI 2018, 107–116 (2018)

    Google Scholar 

Download references

Acknowledgments

We thank everyone who was involved in acquisition and analysis of the datasets at the Department of Perinatal Imaging and Health at King’s College London. We thank all participating mothers.

This work was supported by the European Research Council under the European Union’s Seventh Framework Programme [FP7/ 20072013]/ERC grant agreement no. 319456 dHCP project, the Wellcome/EPSRC Centre for Medical Engineering at King’s College London [WT 203148/Z/16/Z)], the NIHR Clinical Research Facility (CRF) at Guy’s and St Thomas’ and by the National Institute for Health Research Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London.

The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena Uus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Uus, A. et al. (2021). Spatio-Temporal Atlas of Normal Fetal Craniofacial Feature Development and CNN-Based Ocular Biometry for Motion-Corrected Fetal MRI. In: , et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis. UNSURE PIPPI 2021 2021. Lecture Notes in Computer Science(), vol 12959. Springer, Cham. https://doi.org/10.1007/978-3-030-87735-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87735-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87734-7

  • Online ISBN: 978-3-030-87735-4

  • eBook Packages: Computer ScienceComputer Science (R0)