Skip to main content

Automatic Placenta Abnormality Detection Using Convolutional Neural Networks on Ultrasound Texture

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis (UNSURE 2021, PIPPI 2021)

Abstract

Diseases related to the placenta, such as preeclampsia (PE) and fetal growth restriction (FGR), are major causes of mortality and morbidity. Diagnostic criteria of such diseases are defined by biomarkers, such as proteinuria, that appear in advanced gestational age. As placentally-mediated disease is often clinically unrecognized until later stages, accurate early diagnosis is required to allow earlier intervention, which is particularly challenging in low-resource areas without subspecialty clinicians. Proposed attempts at early diagnosis involve a combination of subjective and objective ultrasound placental assessments which have limited accuracy and high interobserver variability. Machine learning, particularly with convolutional neural networks, have shown potential in analyzing complex textural features in ultrasound imaging that may be predictive of disease. We propose a model utilizing a two-stage convolutional neural network pipeline to classify the presence of placental disease. The pipeline involves a segmentation stage to extract the placenta followed by a classification stage. We evaluated the pipeline on retrospectively collected placenta ultrasound scans and diagnostic outcomes of 321 patients taken by 18 sonographers and 3 ultrasound machines. Compared to existing clinical algorithms and neural networks, our classifier achieved significantly higher accuracy of 0.81 ± 0.02 (p < 0.05). Class activation maps were generated to identify potential abnormal regions of interest in placenta tissue. This study provides support that automated image analysis of ultrasound texture may assist physicians in early identification of placental disease, with potential benefits to low-resource environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mackay, A., Berge, C., Atrash, H.: Pregnancy-related mortality from preeclampsia and eclampsia. Obstet. Gynecol. 97(4), 533–538 (2001)

    Google Scholar 

  2. Garite, T.J., Clark, R., Thorpe, J.A.: Intrauterine growth restriction increases morbidity and mortality among premature neonates. Am. J. Obstet. Gynecol. 191(2), 481–487 (2004)

    Article  Google Scholar 

  3. Redman, C.W.: Latest advances in understanding preeclampsia. Science 308(5728), 1592–1594 (2005)

    Article  Google Scholar 

  4. Leslie, K., Thilaganathan, B., Papageorghiou, A.: Early prediction and prevention of pre-eclampsia. Best Pract. Res. Clin. Obstet. Gynaecol. 25(3), 343–354 (2011)

    Article  Google Scholar 

  5. Mol, B.W., Roberts, C.T., Thangarantinam, S., Magee, L.A., De Groot, C.J., Hofmeyr, G.J.: Pre-eclampsia. Lancet 387(10022), 999–1011 (2016)

    Article  Google Scholar 

  6. Rolnik, D.L., Wright, D., Poon, L.C., O’Gorman, N., Syngelaki, A., de Paco Matallana, C., Akolekar, R., Cicero, S., Janga, D., Singh, M., Molina, F.S.: Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N. Engl. J. Med. 377(7), 613–622 (2017)

    Article  Google Scholar 

  7. Romero, R.: Prenatal medicine: the child is the father of the man. J. Matern. Neonatal Med. 22(8), 636–639 (2009)

    Article  Google Scholar 

  8. A. C. of Obstetricians and Gynecologists: CO638: first-trimester risk assessment for early-onset pre-eclampsia. Obstet. Gynecol. 126(638), 25–274 (2015)

    Google Scholar 

  9. Deeba, F., et al.: Multiparametric QUS analysis for placental tissue characterization. In: 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3477–3480 (2018)

    Google Scholar 

  10. O’Gorman, N., Nicolaides, K.H., Poon, L.C.Y.: The use of ultrasound and other markers for early detection of preeclampsia: Women’s Health, pp. 197–207 (2012)

    Google Scholar 

  11. Moreira, M.W.L., Rorigues, J.J.P.C., Oliveira, A.M.B., Ramos, R.F., Saleem, K.: A preeclampsia diagnosis approach using Bayesian networks. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–5 (2016)

    Google Scholar 

  12. Jhee, J., et al.: Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS ONE 14(8), e0221202 (2019)

    Article  Google Scholar 

  13. Sufriyana, H., Wu, Y., Su, E.: Prediction of preeclampsia and intrauterine growth restriction: development of machine learning models on a prospective cohort. JMIR Med. Inform. 8(5), 215411 (2020)

    Article  Google Scholar 

  14. Qi, H., Collins, S., Noble, J.A.: Automatic lacunae localization in placental ultrasound images via layer aggregation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 921–929. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_102

    Chapter  Google Scholar 

  15. Hu, R., Singla, R., Yan, R., Mayer, C., Rohling R.N.: Automated placenta segmentation with a convolutional neural network weighted by acoustic shadow detection. In: Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6718–6723 (2019)

    Google Scholar 

  16. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017, pp. 4700–4708 (2017)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016, pp. 770–778 (2016)

    Google Scholar 

  18. Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  19. Tan, M., Le, Quoc.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114 (2019)

    Google Scholar 

  20. Yang, W., Huang, H., Zhang, Z., Chen, X., Huang, K., Zhang, S.: Towards rich feature discovery with class activation maps augmentation for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019, pp. 1389–1398 (2019)

    Google Scholar 

  21. Anwar, S.M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., Khan, M.K.: Medical image analysis using convolutional neural networks: a review. Image Signal Process. 42(11), 1–13 (2018)

    Google Scholar 

  22. Castro, D.C., Walker, I., Glocker, B.: Causality matters in medical imaging. Nat. Commun. 11(1), 1–10 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by The Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoe Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Z., Hu, R., Yan, R., Mayer, C., Rohling, R.N., Singla, R. (2021). Automatic Placenta Abnormality Detection Using Convolutional Neural Networks on Ultrasound Texture. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis. UNSURE PIPPI 2021 2021. Lecture Notes in Computer Science(), vol 12959. Springer, Cham. https://doi.org/10.1007/978-3-030-87735-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87735-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87734-7

  • Online ISBN: 978-3-030-87735-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics