Brinker, T.J., et al.: Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur. J. Cancer 113, 47–54 (2019)
CrossRef
Google Scholar
Carse, J., McKenna, S.: Active learning for patch-based digital pathology using convolutional neural networks to reduce annotation costs. In: Reyes-Aldasoro, C.C., Janowczyk, A., Veta, M., Bankhead, P., Sirinukunwattana, K. (eds.) ECDP 2019. LNCS, vol. 11435, pp. 20–27. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23937-4_3
CrossRef
Google Scholar
Codella, N., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: IEEE ISBI, pp. 168–172 (2018)
Google Scholar
Combalia, M., et al: BCN20000: dermoscopic lesions in the wild. arXiv preprint arXiv:1908.02288 (2019)
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)
Google Scholar
DeVries, T., Taylor, G.W.: Leveraging uncertainty estimates for predicting segmentation quality. In: Conference on Medical Imaging with Deep Learning (MIDL) (2018)
Google Scholar
Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–8 (2017)
CrossRef
Google Scholar
Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the 33rd International Conference on Machine Learning (ICML), vol. PMLR 48, pp. 1050–1059 (2016)
Google Scholar
Geifman, Y., El-Yaniv, R.: SelectiveNet: a deep neural network with an integrated reject option. In: Proceedings of the 36th International Conference on Machine Learning (ICML), vol. PMLR 97, pp. 2151–2159 (2019)
Google Scholar
Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML), vol. PMLR 70, pp. 1321–1330 (2017)
Google Scholar
Haenssle, H.A., Fink, C., Schneiderbauer, R., et al.: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29(8), 1836–1842 (2018)
CrossRef
Google Scholar
Han, S.S., Kim, M.S., Lim, W., Park, G.H., Park, I., Chang, S.E.: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J. Inv. Dermatol. 138(7), 1529–1538 (2018)
CrossRef
Google Scholar
Han, S.S., et al.: Augmented intelligence dermatology: deep neural networks empower medical professionals in diagnosing skin cancer and predicting treatment options for 134 skin disorders. J. Inv. Dermatol. 140(9), 1753–1761 (2020)
CrossRef
Google Scholar
Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: ICLR (2017)
Google Scholar
Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580 (2012)
Kawahara, J., Hamarneh, G.: Visual diagnosis of dermatological disorders: human and machine performance. arxiv:1906.01256, 6 (2019)
Mårtensson, G., et al.: The reliability of a deep learning model in clinical out-of-distribution MRI data: a multicohort study. Med. Image Anal. 66, 101714 (2020)
CrossRef
Google Scholar
Mobiny, A., Singh, A., Van Nguyen, H.: Risk-aware machine learning classifier for skin lesion diagnosis. J. Clin. Med. 8(8), 1241 (2019)
CrossRef
Google Scholar
Mozafari, A.S., Gomes, H.S., Leão, W., Janny, S., Gagné, C.: Attended temperature scaling: a practical approach for calibrating deep neural networks. arXiv preprint arXiv:1810.11586 (2018)
Nixon, J., Dusenberry, M.W., Zhang, L., Jerfel, G., Tran, D.: Measuring calibration in deep learning. In: CVPR Workshops, vol. 2 (2019)
Google Scholar
Smith, L.: Cyclical learning rates for training neural networks. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472. IEEE (2017)
Google Scholar
Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning (ICML), vol. PMLR 97, pp. 6105–6114 (2019)
Google Scholar
Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 (2018)
CrossRef
Google Scholar