Bendale, A., Boult, T.: Towards open set deep networks. arXiv:1511.06233 [cs], November 2015. http://arxiv.org/abs/1511.06233
California Healthcare Foundation, EyePACS: Diabetic Retinopathy Detection (2015). https://www.kaggle.com/c/diabetic-retinopathy-detection/overview
Cao, T., Huang, C.W., Hui, D.Y.T., Cohen, J.P.: A benchmark of medical out of distribution detection (2020)
Google Scholar
DeVries, T., Taylor, G.W.: Learning confidence for out-of-distribution detection in neural networks. arXiv preprint arXiv:1802.04865 (2018)
Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning, October 2016. https://arxiv.org/abs/1506.02142
Gao, L., Wu, S.: Response score of deep learning for out-of-distribution sample detection of medical images. J. Biomed. Inform. 107, 103442 (2020). https://doi.org/10.1016/j.jbi.2020.103442
CrossRef
Google Scholar
Halabi, S.S., et al.: The RSNA pediatric bone age machine learning challenge. Radiology 290(2), 498–503 (2019)
CrossRef
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)
Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: International Conference on Learning Representations (2016)
Google Scholar
Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier exposure. In: International Conference on Learning Representations (2018)
Google Scholar
Henriksson, J., Berger, C., Borg, M., Tornberg, L., Raman Sathyamoorthy, S., Englund, C.: Performance analysis of out-of-distribution detection on trained neural networks. Inform. Softw. Technol. 130, 106409 (2021). https://doi.org/10.1016/j.infsof.2020.106409
CrossRef
Google Scholar
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167 [cs], March 2015. http://arxiv.org/abs/1502.03167
Johnson, A.E., et al.: MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs. arXiv preprint arXiv:1901.07042 (2019)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, January 2017. https://arxiv.org/abs/1412.6980
Krizhevsky, A.: Learning multiple layers of features from tiny images. University of Toronto (2009)
Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)
Google Scholar
Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles, November 2017. https://arxiv.org/abs/1612.01474
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
CrossRef
Google Scholar
Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for detecting out-of-distribution samples. In: International Conference on Learning Representations (2018)
Google Scholar
Li, X., Lu, Y., Desrosiers, C., Liu, X.: Out-of-distribution detection for skin lesion images with deep isolation forest. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 91–100. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_10
CrossRef
Google Scholar
Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. In: International Conference on Learning Representations (2018)
Google Scholar
Linmans, J., van der Laak, J., Litjens, G.: Efficient out-of-distribution detection in digital pathology using multi-head convolutional neural networks. In: Arbel, T., Ben Ayed, I., de Bruijne, M., Descoteaux, M., Lombaert, H., Pal, C. (eds.) Proceedings of the Third Conference on Medical Imaging with Deep Learning. Proceedings of Machine Learning Research, vol. 121, pp. 465–478. PMLR, 06–08 July 2020. http://proceedings.mlr.press/v121/linmans20a.html
Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)
Google Scholar
Rajpurkar, P., et al.: MURA: large dataset for abnormality detection in musculoskeletal radiographs. arXiv preprint arXiv:1712.06957 (2017)
Roady, R., Hayes, T.L., Kemker, R., Gonzales, A., Kanan, C.: Are open set classification methods effective on large-scale datasets? Plos One 15(9) (2020). https://doi.org/10.1371/journal.pone.0238302
Wang, N., Chen, C., Xie, Y., Ma, L.: Brain tumor anomaly detection via latent regularized adversarial network. CoRR abs/2007.04734 (2020). https://arxiv.org/abs/2007.04734
Wu, J., Zhang, Q., Xu, G.: Tiny ImageNet challenge. Technical report, Stanford University (2017)
Google Scholar
Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)