Abstract
Within clinical practise, a shift in the distribution of data collected over time is commonly observed. This occurs generally due to deliberate changes in acquisition hardware but also through natural, unforeseen shifts in the hardware’s physical properties like scanner SNR and gradient non-linearities. These domain shifts thus may not be known a-priori, but may cause significant degradation in the diagnostic performance of machine learning models. A deployed diagnostic system must therefore be robust to such unpredictable and continuous domain shifts. However, given the infrastructure and resource constraints pervasive in clinical settings in developing countries, such robustness must be achieved under finite memory and data privacy constraints. In this work, we propose a domain-incremental learning approach that leverages vector quantization to efficiently store and replay hidden representations under limited memory constraints. Our proposed approach validated on well known large-scale public Chest X-ray datasets achieves significant reduction in catastrophic forgetting over previous approaches in medical imaging, while requiring no prior knowledge of domain shift boundaries and a constrained memory. Finally, we also formulate a more natural continual learning setting for medical imaging using a tapered uniform distribution schedule with gradual interleaved domain shifts.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Baweja, C., Glocker, B., Kamnitsas, K.: Towards continual learning in medical imaging. arXiv preprint arXiv:1811.02496 (2018)
Bustos, A., Pertusa, A., Salinas, J.M., de la Iglesia-Vayá, M.: PadChest: a large chest x-ray image dataset with multi-label annotated reports. Med. Image Anal. 66, 101797 (2020)
Caccia, L., Belilovsky, E., Caccia, M., Pineau, J.: Online learned continual compression with adaptive quantization modules. In: International Conference on Machine Learning, pp. 1240–1250. PMLR (2020)
Chavez, A., Littman-Quinn, R., Ndlovu, K., Kovarik, C.L.: Using TV white space spectrum to practise telemedicine: a promising technology to enhance broadband internet connectivity within healthcare facilities in rural regions of developing countries. J. Telemed. Telecare 22(4), 260–263 (2016)
Cohen, J.P., Hashir, M., Brooks, R., Bertrand, H.: On the limits of cross-domain generalization in automated X-ray prediction. In: Medical Imaging with Deep Learning, pp. 136–155. PMLR (2020)
Cohen, J.P., Viviano, J., Morrison, P., Brooks, R., Hashir, M., Bertrand, H.: TorchXRayVision: a library of chest X-ray datasets and models (2020). https://github.com/mlmed/torchxrayvision
Gray, R.: Vector quantization. IEEE ASSP Mag. 1(2), 4–29 (1984). https://doi.org/10.1109/MASSP.1984.1162229
Hayes, T.L., Kafle, K., Shrestha, R., Acharya, M., Kanan, C.: REMIND your neural network to prevent catastrophic forgetting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 466–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_28
Hofmanninger, J., Perkonigg, M., Brink, J.A., Pianykh, O., Herold, C., Langs, G.: Dynamic memory to alleviate catastrophic forgetting in continuous learning settings. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 359–368. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_35
Karani, N., Chaitanya, K., Baumgartner, C., Konukoglu, E.: A lifelong learning approach to brain MR segmentation across scanners and protocols. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 476–484. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_54
Kemker, R., McClure, M., Abitino, A., Hayes, T., Kanan, C.: Measuring catastrophic forgetting in neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)
Kurle, R., Cseke, B., Klushyn, A., van der Smagt, P., Günnemann, S.: Continual learning with Bayesian neural networks for non-stationary data. In: International Conference on Learning Representations (2019)
Lenga, M., Schulz, H., Saalbach, A.: Continual learning for domain adaptation in chest X-ray classification. In: Medical Imaging with Deep Learning, pp. 413–423. PMLR (2020)
Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)
Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: Advances in Neural Information Processing Systems, pp. 6467–6476 (2017)
Mallya, A., Lazebnik, S.: PackNet: adding multiple tasks to a single network by iterative pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7765–7773 (2018)
McDermott, M.B., Hsu, T.M.H., Weng, W.H., Ghassemi, M., Szolovits, P.: CheXpert++: approximating the CheXpert labeler for speed, differentiability, and probabilistic output. In: Machine Learning for Healthcare Conference, pp. 913–927. PMLR (2020)
McKechan, D., Robinson, C., Sathyaprakash, B.S.: A tapering window for time-domain templates and simulated signals in the detection of gravitational waves from coalescing compact binaries. Class. Quantum Gravity 27(8), 084020 (2010)
Mesri, H.Y., David, S., Viergever, M.A., Leemans, A.: The adverse effect of gradient nonlinearities on diffusion MRI: from voxels to group studies. Neuroimage 205, 116127 (2020)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703 (2019)
Rahman, M.A., Hossain, M.S., Alrajeh, N.A., Gupta, B.: A multimodal, multimedia point-of-care deep learning framework for COVID-19 diagnosis. ACM Trans. Multimedia Comput. Commun. Appl. 17(1s), 1–24 (2021)
Rajpurkar, P., et al.: CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)
Ravishankar, H., Venkataramani, R., Anamandra, S., Sudhakar, P., Annangi, P.: Feature transformers: privacy preserving lifelong learners for medical imaging. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 347–355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_38
Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)
Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)
Schwarz, J., et al.: Progress & compress: a scalable framework for continual learning. arXiv preprint arXiv:1805.06370 (2018)
Sun, W., Cai, Z., Li, Y., Liu, F., Fang, S., Wang, G.: Security and privacy in the medical Internet of Things: a review. Secur. Commun. Netw. 2018, 1–9 (2018)
van de Ven, G.M., Tolias, A.S.: Generative replay with feedback connections as a general strategy for continual learning. arXiv preprint arXiv:1809.10635 (2018)
Venkataramani, R., Ravishankar, H., Anamandra, S.: Towards continuous domain adaptation for medical imaging. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 443–446. IEEE (2019)
Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Srivastava, S., Yaqub, M., Nandakumar, K., Ge, Z., Mahapatra, D. (2021). Continual Domain Incremental Learning for Chest X-Ray Classification in Low-Resource Clinical Settings. In: Albarqouni, S., et al. Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health. DART FAIR 2021 2021. Lecture Notes in Computer Science(), vol 12968. Springer, Cham. https://doi.org/10.1007/978-3-030-87722-4_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-87722-4_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87721-7
Online ISBN: 978-3-030-87722-4
eBook Packages: Computer ScienceComputer Science (R0)
