Skip to main content

Continual Domain Incremental Learning for Chest X-Ray Classification in Low-Resource Clinical Settings

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12968))

Abstract

Within clinical practise, a shift in the distribution of data collected over time is commonly observed. This occurs generally due to deliberate changes in acquisition hardware but also through natural, unforeseen shifts in the hardware’s physical properties like scanner SNR and gradient non-linearities. These domain shifts thus may not be known a-priori, but may cause significant degradation in the diagnostic performance of machine learning models. A deployed diagnostic system must therefore be robust to such unpredictable and continuous domain shifts. However, given the infrastructure and resource constraints pervasive in clinical settings in developing countries, such robustness must be achieved under finite memory and data privacy constraints. In this work, we propose a domain-incremental learning approach that leverages vector quantization to efficiently store and replay hidden representations under limited memory constraints. Our proposed approach validated on well known large-scale public Chest X-ray datasets achieves significant reduction in catastrophic forgetting over previous approaches in medical imaging, while requiring no prior knowledge of domain shift boundaries and a constrained memory. Finally, we also formulate a more natural continual learning setting for medical imaging using a tapered uniform distribution schedule with gradual interleaved domain shifts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   53.49
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   71.49
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baweja, C., Glocker, B., Kamnitsas, K.: Towards continual learning in medical imaging. arXiv preprint arXiv:1811.02496 (2018)

  2. Bustos, A., Pertusa, A., Salinas, J.M., de la Iglesia-Vayá, M.: PadChest: a large chest x-ray image dataset with multi-label annotated reports. Med. Image Anal. 66, 101797 (2020)

    Article  Google Scholar 

  3. Caccia, L., Belilovsky, E., Caccia, M., Pineau, J.: Online learned continual compression with adaptive quantization modules. In: International Conference on Machine Learning, pp. 1240–1250. PMLR (2020)

    Google Scholar 

  4. Chavez, A., Littman-Quinn, R., Ndlovu, K., Kovarik, C.L.: Using TV white space spectrum to practise telemedicine: a promising technology to enhance broadband internet connectivity within healthcare facilities in rural regions of developing countries. J. Telemed. Telecare 22(4), 260–263 (2016)

    Article  Google Scholar 

  5. Cohen, J.P., Hashir, M., Brooks, R., Bertrand, H.: On the limits of cross-domain generalization in automated X-ray prediction. In: Medical Imaging with Deep Learning, pp. 136–155. PMLR (2020)

    Google Scholar 

  6. Cohen, J.P., Viviano, J., Morrison, P., Brooks, R., Hashir, M., Bertrand, H.: TorchXRayVision: a library of chest X-ray datasets and models (2020). https://github.com/mlmed/torchxrayvision

  7. Gray, R.: Vector quantization. IEEE ASSP Mag. 1(2), 4–29 (1984). https://doi.org/10.1109/MASSP.1984.1162229

    Article  Google Scholar 

  8. Hayes, T.L., Kafle, K., Shrestha, R., Acharya, M., Kanan, C.: REMIND your neural network to prevent catastrophic forgetting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 466–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_28

    Chapter  Google Scholar 

  9. Hofmanninger, J., Perkonigg, M., Brink, J.A., Pianykh, O., Herold, C., Langs, G.: Dynamic memory to alleviate catastrophic forgetting in continuous learning settings. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 359–368. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_35

    Chapter  Google Scholar 

  10. Karani, N., Chaitanya, K., Baumgartner, C., Konukoglu, E.: A lifelong learning approach to brain MR segmentation across scanners and protocols. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 476–484. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_54

    Chapter  Google Scholar 

  11. Kemker, R., McClure, M., Abitino, A., Hayes, T., Kanan, C.: Measuring catastrophic forgetting in neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  12. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kurle, R., Cseke, B., Klushyn, A., van der Smagt, P., Günnemann, S.: Continual learning with Bayesian neural networks for non-stationary data. In: International Conference on Learning Representations (2019)

    Google Scholar 

  14. Lenga, M., Schulz, H., Saalbach, A.: Continual learning for domain adaptation in chest X-ray classification. In: Medical Imaging with Deep Learning, pp. 413–423. PMLR (2020)

    Google Scholar 

  15. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  16. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: Advances in Neural Information Processing Systems, pp. 6467–6476 (2017)

    Google Scholar 

  17. Mallya, A., Lazebnik, S.: PackNet: adding multiple tasks to a single network by iterative pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7765–7773 (2018)

    Google Scholar 

  18. McDermott, M.B., Hsu, T.M.H., Weng, W.H., Ghassemi, M., Szolovits, P.: CheXpert++: approximating the CheXpert labeler for speed, differentiability, and probabilistic output. In: Machine Learning for Healthcare Conference, pp. 913–927. PMLR (2020)

    Google Scholar 

  19. McKechan, D., Robinson, C., Sathyaprakash, B.S.: A tapering window for time-domain templates and simulated signals in the detection of gravitational waves from coalescing compact binaries. Class. Quantum Gravity 27(8), 084020 (2010)

    Article  Google Scholar 

  20. Mesri, H.Y., David, S., Viergever, M.A., Leemans, A.: The adverse effect of gradient nonlinearities on diffusion MRI: from voxels to group studies. Neuroimage 205, 116127 (2020)

    Article  Google Scholar 

  21. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703 (2019)

  22. Rahman, M.A., Hossain, M.S., Alrajeh, N.A., Gupta, B.: A multimodal, multimedia point-of-care deep learning framework for COVID-19 diagnosis. ACM Trans. Multimedia Comput. Commun. Appl. 17(1s), 1–24 (2021)

    Article  Google Scholar 

  23. Rajpurkar, P., et al.: CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

  24. Ravishankar, H., Venkataramani, R., Anamandra, S., Sudhakar, P., Annangi, P.: Feature transformers: privacy preserving lifelong learners for medical imaging. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 347–355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_38

    Chapter  Google Scholar 

  25. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  26. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)

  27. Schwarz, J., et al.: Progress & compress: a scalable framework for continual learning. arXiv preprint arXiv:1805.06370 (2018)

  28. Sun, W., Cai, Z., Li, Y., Liu, F., Fang, S., Wang, G.: Security and privacy in the medical Internet of Things: a review. Secur. Commun. Netw. 2018, 1–9 (2018)

    Google Scholar 

  29. van de Ven, G.M., Tolias, A.S.: Generative replay with feedback connections as a general strategy for continual learning. arXiv preprint arXiv:1809.10635 (2018)

  30. Venkataramani, R., Ravishankar, H., Anamandra, S.: Towards continuous domain adaptation for medical imaging. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 443–446. IEEE (2019)

    Google Scholar 

  31. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikhar Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivastava, S., Yaqub, M., Nandakumar, K., Ge, Z., Mahapatra, D. (2021). Continual Domain Incremental Learning for Chest X-Ray Classification in Low-Resource Clinical Settings. In: Albarqouni, S., et al. Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health. DART FAIR 2021 2021. Lecture Notes in Computer Science(), vol 12968. Springer, Cham. https://doi.org/10.1007/978-3-030-87722-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87722-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87721-7

  • Online ISBN: 978-3-030-87722-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics