Zhao, K., et al.: Application research of image recognition technology based on CNN in image location of environmental monitoring UAV. EURASIP J. Image. Video Process. 2018(1), 1–11 (2018). https://doi.org/10.1186/s13640-018-0391-6
CrossRef
Google Scholar
Ker, J., Wang, L., Rao, J., Lim, T.: Deep learning applications in medical image analysis. IEEE Access 6, 9375–9389 (2017)
CrossRef
Google Scholar
Eikelboom, J.A., et al.: Improving the precision and accuracy of animal population estimates with aerial image object detection. MEE 10(11), 1875–1887 (2019)
Google Scholar
Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35, 3991–4458 (2003)
CrossRef
Google Scholar
Mian, A., Bennamoun, M., Owens, R.: An efficient multimodal 2D–3D hybrid approach to automatic face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1927–1943 (2007)
CrossRef
Google Scholar
Mian, A.S., Bennamoun, M., Owens, R.: Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1584–1601 (2006)
CrossRef
Google Scholar
Kim, T.-K., Kittler, J., Cipolla, R.: Discriminative learning and recognition of image set classes using canonical correlations. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1005–1018 (2007)
CrossRef
Google Scholar
Wang, R., Shan, S., Chen, X., Gao, W.: Manifold-manifold distance with application to face recognition based on image set. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition, pp. 1–8 (2008)
Google Scholar
Wang, R., Chen, X.: Manifold discriminant analysis. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition, pp. 429–436 (2009)
Google Scholar
Cevikalp, H., Triggs, B.: Face recognition based on image sets. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition, pp. 2567–2573 (2010)
Google Scholar
Harandi, M.T., Sanderson, C., Shirazi, S., Lovell, B.C.: Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition, pp. 2705–2712 (2010)
Google Scholar
Hu, Y., Mian, A.S., Owens, R.: Face recognition using sparse approximated nearest points between image sets. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1992–2004 (2012)
CrossRef
Google Scholar
Javidi, B.: Image Recognition and Classification: Algorithms, Systems, and Applications. CRC Press, New York (2002). https://doi.org/10.1201/9780203910962
Wu, R., Yan, S., Shan, Y., Dang, Q., Sun, G.: Deep image: scaling up image recognition. arXiv preprint arXiv:1501.02876 7(8) (2015)
Memisevic, R., Hinton, G.: Unsupervised learning of image transformations. In: 2007 IEEE CVPR, pp. 1–8. IEEE (2007)
Google Scholar
OpenCV. https://docs.opencv.org/4.1.0/. Accessed 21 May 2021
Numpy. https://numpy.org/doc/1.16/. Accessed 21 May 2021
Marciniak, T., Chmielewska, A., Weychan, R., Parzych, M., Dabrowski, A.: Influence of low resolution of images on reliability of face detection and recognition. Multimedia Tools Appl. 74(12), 4329–4349 (2013). https://doi.org/10.1007/s11042-013-1568-8
CrossRef
Google Scholar