Skip to main content

Modeling and Simulation of Phase Change Material Based Thermal Energy Accumulators in Small-Scale Solar Thermal Dryers

  • Chapter
  • First Online:
Modeling and Simulation in Chemical Engineering

Abstract

Solar thermal energy is of intermittent and dynamic character and the necessity to use this energy during non-sunshine periods has led to the development of thermal energy accumulators. The need of compact solutions have prompted researchers towards using latent heat storage. Phase change materials as thermal energy storage are attractive because of their high storage density and characteristics to release thermal energy at constant temperature corresponding to the phase transition temperature. The chapter overviews the recent state-of-the-art small-scale solar thermal dryers integrated with phase change material as an energy accumulator. This is an intensive field of investigation for more than 30 years with importance for the agriculture and the food industry especially in hot climate. A variety of commercial small-scale solar dryers are offered as a low-cost, zero-energy solution for small farmers. And yet, there are no commercial systems using latent thermal storage because at the present level of development this unit will increase unacceptably the price of the system. The solution needs very simple design, accessible materials, and optimal conditions for operation.

The aim of the present work is to make an overview of the methods for theoretical evaluation and prediction, which are used to design and assess this devices and to point out the most appropriate of them for this new solution. The models enable to distinguish the most cost- and energy-effective solar dryer systems with thermal storage among the great number of designs, devices, and materials. The resulting conclusions from the collected and compared information will serve as a base for a novel solution of a cost-effective thermal energy storage for a small-scale solar dryer, which will lead to improved efficiency of the drying process, due to controlled temperature and longer operational time. This information might serve also in the development of the wider field of thermal energy storage, which is an important part of the technologies of renewable and waste energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Area, m2

c p :

Specific heat, J/(kg K)

c p,SAH :

Average specific heat of air between TSAH,i and TSAH,o, J/(kg K)

c PCM,s :

Average specific heat of solid PCM J/(kg K)

c PCM,l :

Average specific heat of liquid PCM, J/(kg K)

E :

Energy, J

Ex :

Exergy, J

\( \dot{E}x \) :

Exergy flow rate, W

g :

Gravitational acceleration vector, m/s2

h :

Sensible enthalpy, J/kg

h fg :

Latent heat of vaporization, J/kg

H :

Enthalpy, J/kg

I :

Solar intensity, W/m2

k :

Thermal conductivity, W/(mK)

L :

Heat of fusion per unit mass, J/kg

m :

Mass, kg

:

Mass flow rate, kg/s

p :

Static pressure, Pa

\( \overline{P} \) :

Time-averaged pressure, Pa

P fan :

Power consumption of fan, W

Pr:

Prandtl number

R :

Gas constant, J/(kgK)

Q :

Thermal energy, J

\( \dot{Q} \) :

Heat flow rate, W

t :

Time, s

T :

Temperature, K

\( \overline{T} \) :

Time-averaged temperature, K

\( {\overline{T}}^{\prime } \) :

Temperature fluctuation, K

\( \overline{u_i} \) :

Time-averaged velocity component, m/s

\( \overline{u_i^{\hbox{'}}} \) :

Velocity fluctuation, m/s

x i :

Coordinate axis, m

v :

Velocity vector, m/s

α :

Convective heat transfer coefficient, W/(m2K)

α’ :

Absorptivity

η :

Thermal efficiency

β :

Liquid volume fraction

γ :

Thermal expansion coefficient, 1/K

Δ:

Difference

μ :

Dynamic viscosity, Pa.s

ρ :

Density, kg/m3

τ :

Stress tensor, Pa

τ’ :

Transmissivity

a :

Air

abs :

Absorber

ch :

Charging

d :

Dryer

dis :

Discharging

des :

Destruction

e :

Evaporated moisture

es :

Energy storage

f :

Fluid

f ch :

Final in charging

f dis :

Final in discharging

F :

Fusion

i :

Inlet

i ch :

Initial in charging

i dis :

Initial in discharging

in :

Input

l :

Liquid

o :

Outlet

out :

Output

PCM :

Phase change material

r :

Reference

re :

Received

s :

Solid

sys :

Drying system

SA :

Solar accumulator

SAH :

Solar air heater

w :

Wax

BC:

Boundary conditions

CFD:

Computational fluid dynamics

DC:

Drying chamber

ETC:

Evacuated tube collector

FLT:

First law of thermodynamics

FPC:

Flat plate collector

HDPC:

High density polyethylene containers

HE:

Heat exchanger

HTF:

Heat transfer fluid

LHS:

Latent heat storage

PCM:

Phase change material

SAH:

Solar air heater

SLT:

Second law of thermodynamics

TES:

Thermal energy storage

References

  1. P. Verma, K. Varun, S.K. Singal, Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renew. Sust. Energ. Rev. 12, 999–1031 (2008)

    CAS  Google Scholar 

  2. J.L. Butler, J.M. Troeger, Drying Peanuts Using Solar Energy Stored in a Rockbed. Agricultural Energy, Vol. I Solar Energy, Selected Papers and Abstracts (ASAE Publication, St. Joseph, MI, 1980)

    Google Scholar 

  3. H. Atalay, Assessment of energy and cost analysis of packed bed and phase change material thermal energy storage system for the solar assisted drying process. Sol. Energy 198, 124–138 (2020)

    CAS  Google Scholar 

  4. G. Alva, Y. Lin, G. Fang, An overview of thermal energy storage systems. Energy 144, 341–378 (2018)

    Google Scholar 

  5. V. Shanmugam, E. Natarajan, Experimental study of regenerative desiccant integrated solar dryer with and without reflective mirror. Appl. Therm. Eng. 27(8–9), 1543–1551 (2007)

    CAS  Google Scholar 

  6. A. Bonaparte, Z. Alikhani, C.A. Madramootoo, V. Raghavan, Some quality characteristics of solar-dried cocoa beans in St Lucia. J. Sci. Food Agric. 76, 553–558 (1998)

    CAS  Google Scholar 

  7. V.K. Sharma, A. Colangelo, G. Spagna, Experimental investigation of different solar dryers suitable for fruit and vegetable drying. Renew. Energy 6(4), 413–424 (1995)

    Google Scholar 

  8. C.L. Hii, C.L. Law, A. Rahman, S. Jinap, Y.B. Che Man, Quality comparison of cocoa beans dried using solar and sun drying with perforated and non-perforated drying platform. Proceedings of the 5th Asia-Pacific Drying Conference 12, 546–552 (2007)

    Google Scholar 

  9. G.A. Lane, Solar Heat Storage: Latent Heat Materials, Vol. I: Background and Scientific Principles (CRC, Boca Raton, Florida, 1983)

    Google Scholar 

  10. S. Aboul-Enein, A.A. El-Sebaii, M.R.I. Ramadan, H.G. El-Gohary, Parametric study of a solar air heater with and without thermal storage for solar drying applications. Renew. Energy 21(3–4), 505–522 (2000)

    Google Scholar 

  11. A.O. Fagunwa, O. A. Koya, and M.O. Faborode. Development of an intermittent solar dryer for cocoa beans. Agricultural Engineering International, Manuscript number 1292, vol. XI, July 2009, [E journal] Available: CIGR E journal

    Google Scholar 

  12. S.F. Dina, H. Ambarita, F.H. Napitupulu, H. Kawai, Study on effectiveness of continuous solar dryer integrated with desiccant thermal storage for drying cocoa beans. Case Studies in Thermal Engineering 5, 32–40 (2015)

    Google Scholar 

  13. A. Sharma, C.R. Chen, N.V. Lan, Solar-energy drying systems: A review. Renew. Sust. Energ. Rev. 13(6–7), 1185–1210 (2009)

    Google Scholar 

  14. A.K. Bhardwaj, R. Chauhan, R. Kumar, M. Sethi, A. Rana, Experimental investigation of an indirect solar dryer integrated with phase change material for drying valeriana jatamansi (medicinal herb). Case studies in thermal engineering 10, 302–314 (2017)

    Google Scholar 

  15. S.M. Shalaby, M.A. Bek, A.A. El-Sebaii, Solar dryers with PCM as energy storage medium: A review. Renew. Sust. Energ. Rev. 33, 110–116 (2014)

    CAS  Google Scholar 

  16. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 13(2), 318–345 (2009)

    CAS  Google Scholar 

  17. L.M. Bal, S. Satya, S.N. Naik, Solar dryer with thermal energy storage systems for drying agricultural food products: A review. Renew. Sust. Energ. Rev. 14(8), 2298–2314 (2010)

    Google Scholar 

  18. O.A. Babar, V.K. Arora, P.K. Nema, Selection of phase change material for solar thermal storage application: A comparative study. J. Braz. Soc. Mech. Sci. Eng. 41(9), 355 (2019)

    Google Scholar 

  19. V.M. Swami, A.T. Autee, T.R. Anil, Experimental analysis of solar fish dryer using phase change material. Journal of Energy Storage 20, 310–315 (2018)

    Google Scholar 

  20. R. Singh, S. Sadeghi, B. Shabani, Thermal conductivity enhancement of phase change materials for low-temperature thermal energy storage applications. Energies 12(1), 75 (2019)

    CAS  Google Scholar 

  21. H. Ettouney, H. El-Dessouky, E. Al-Kandari, Heat transfer characteristics during melting and solidification of phase change energy storage process. Ind. Eng. Chem. Res. 43(17), 5350–5357 (2004)

    CAS  Google Scholar 

  22. A. Khyad, H. Samrani, M.N. Bargach, R. Tadili, Energy storage with PCMs: Experimental analysis of paraffin’s phase change phenomenon & improvement of its properties. J. Mater. Environ. Sci 7(7), 2551–2560 (2016)

    CAS  Google Scholar 

  23. B. Cárdenas, N. León, High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renew. Sust. Energ. Rev. 27, 724–737 (2013)

    Google Scholar 

  24. L. Liu, D. Su, Y. Tang, G. Fang, Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renew. Sust. Energ. Rev. 62, 305–317 (2016)

    CAS  Google Scholar 

  25. S. Wu, T. Yan, Z. Kuai, W. Pan, Thermal conductivity enhancement on phase change materials for thermal energy storage: A review. Energy Storage Materials 25, 251–295 (2020)

    Google Scholar 

  26. M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: Materials and applications. Energy Convers. Manag. 45(9–10), 1597–1615 (2004)

    CAS  Google Scholar 

  27. N.S. Dhaidan, J.M. Khodadadi, Melting and convection of phase change materials in different shape containers: A review. Renew. Sust. Energ. Rev. 43, 449–477 (2015)

    CAS  Google Scholar 

  28. B. Zivkovic, I. Fujii, An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers. Sol. Energy 70(1), 51–61 (2001)

    CAS  Google Scholar 

  29. J. Wei, Y. Kawaguchi, S. Hirano, H. Takeuchi, Study on a PCM heat storage system for rapid heat supply. Appl. Therm. Eng. 25(17–18), 2903–2920 (2005)

    CAS  Google Scholar 

  30. J. Vásquez, A. Reyes, N. Pailahueque, Modeling, simulation and experimental validation of a solar dryer for agro-products with thermal energy storage system. Renew. Energy 139, 1375–1390 (2019)

    Google Scholar 

  31. S. Devahastin, S. Pitaksuriyarat, Use f latent heat storage to conserve energy during drying and its effect on drying kinetics of a food product. Appl. Therm. Eng. 26, 1705–1713 (2006)

    Google Scholar 

  32. Z. Khan, Z.A. Khan, An experimental investigation of discharge/solidification cycle of paraffin in novel shell and tube with longitudinal fins based latent heat storage system. Energy Convers. Manag. 154, 157–167 (2017)

    CAS  Google Scholar 

  33. A. Tiwari, A review on solar drying of agricultural produce. J. Food Process. Technol. 7(9), 1–12 (2016)

    Google Scholar 

  34. D.V.N. Lakshmi, P. Muthukumar, A. Layek, P.K. Nayak, Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage. Renew. Energy 120, 23–34 (2018)

    CAS  Google Scholar 

  35. D.K. Rabha, P. Muthukumar, Performance studies on a forced convection solar dryer integrated with a paraffin wax-based latent heat storage system. Sol. Energy 149, 214–226 (2017)

    CAS  Google Scholar 

  36. V.V. Bhagwat, S.P. Salve, S. Debnath, Experimental analysis of a solar dehydration with phase changing material. AIP Conference Proceedings 1, 020003 (1998)

    Google Scholar 

  37. S. Kumar, V.S.K. Kumar, Charging-discharging characteristics of macro encapsulated phase change materials in an active thermal energy storage system for a solar drying kiln. Therm. Sci. 21, 2525–2532 (2017)

    Google Scholar 

  38. A. El Khadraoui, S. Bouadila, S. Kooli, A. Farhat, A. Guizani, Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM. J. Clean. Prod. 148, 37–48 (2017)

    Google Scholar 

  39. H. Esen, Experimental energy and exergy analysis of a double-flow solar air heater. Build. Environ. 43, 1046–1054 (2008)

    Google Scholar 

  40. H. Benli, Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes. Renew. Energy 50, 58–67 (2013)

    Google Scholar 

  41. S. Karthikeyan, G. Ravikumar Solomon, V. Kumaresan, R. Velraj, Parametric studies on packed bed storage unit filled with PCM encapsulated spherical containers for low temperature solar air heating application. Energy Convers. Manag. 78, 74–80 (2014)

    Google Scholar 

  42. A. Reyes, A. Mahn, F. Vásquez, Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Convers. Manag. 83, 241–248 (2014)

    CAS  Google Scholar 

  43. A.K. Raj, M. Srinivas, S. Jayaraj, A cost-effective method to improve the performance of solar air heaters using discrete macro-encapsulated PCM capsules for drying applications. Appl. Therm. Eng. 146, 910–920 (2019)

    CAS  Google Scholar 

  44. A.E. Kabeel, A. Khalil, S.M. Shalaby, M.E. Zayed, Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. Energy Convers. Manag. 113, 264–272 (2016)

    CAS  Google Scholar 

  45. T. Alam, R.P. Saini, J.S. Saini, Experimental investigation on heat transfer enhancement due to V-shaped perforated blocks in a rectangular duct of solar air heater. Energy Convers. Manag. 81, 374–383 (2014)

    Google Scholar 

  46. A. Ghiami, S. Ghiami, Comparative study based on energy and exergy analyses of a baffled solar air heater with latent storage collector. Appl. Therm. Eng. 133, 797–808 (2018)

    CAS  Google Scholar 

  47. R. Bakari, Heat transfer optimization in air flat plate solar collectors integrated with baffles. Journal of Power and Energy Engineering 6(1), 70–84 (2018)

    Google Scholar 

  48. M.C. Ndukwu, L. Bennamoun, F.I. Abam, A.B. Eke, D. Ukoha, Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium. Renew. Energy 113, 1182–1192 (2017)

    CAS  Google Scholar 

  49. V.R. Voller, M. Cross, N.C. Markatos, An enthalpy method for convection/diffusion phase change. Int. J. Numer. Meth. Eng. 24, 271–284 (1987)

    Google Scholar 

  50. S.M. Shalaby, M.A. Bek, Experiment investigation of a novel indirect solar dryer implementing PCM as energy storage medium. Energy Convers. Manag. 83, 1–8 (2014)

    Google Scholar 

  51. A.G. Georgiev, R. Popov, and E.T. Toshkov. Investigation of a hybrid system with ground source heat pump and solar collectors: Charging of thermal storages and space heating. Renew. Energy, vol. 147, part 2, pp. 2774–2790, 2020

    Google Scholar 

  52. A. Bejan, Two thermodynamic optima in the design of sensible heat units for energy storage. J. Heat Transf. 100(4), 708–712 (1978)

    Google Scholar 

  53. I. Dincer, Y.A. Cengel, Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 3, 116–149 (2001)

    Google Scholar 

  54. K. Taheri, R. Gadowa, A. Killinger, Exergy analysis as a developed concept of energy efficiency optimized processes: The case of thermal spray processes. Procedia CIRP 17, 511–516 (2014)

    Google Scholar 

  55. D. Kumar, P. Mahantaa, P. Kalita, Energy and exergy analysis of a natural convection dryer with and without sensible heat storage medium. Journal of Energy Storage 29, 101481 (2020)

    Google Scholar 

  56. P.K. Nag, Basic and Applied Thermodynamics (Tata McGraw-Hill, 2006)

    Google Scholar 

  57. M. Mohanraj, P. Chandrasekar, Performance of a forced convection solar dryer integrated with gravel as heat storage material for chili drying. J. Eng. Sci. Technol. 4(3), 305–314 (2009)

    Google Scholar 

  58. K. Kant, A. Shukla, A. Sharma, A. Kumar, A. Jain, Thermal energy storage based solar drying systems: A review. Innovative Food Sci. Emerg. Technol. 34, 86–99 (2016)

    Google Scholar 

  59. D. B. Dzhonova-Atansova, A. G. Georgiev, and R. K. Popov. Numerical study of heat transfer in macro-encapsulated phase change material for thermal energy storage. Bulg. Chem. Commun., vol. 48, Spec. Iss. E, pp.189–194, 2016

    Google Scholar 

  60. A. Seitov, B. Akhmetov, A. G. Georgiev, A. Kaltayev, R. K. Popov, D. B. Dzhonova-Atanasova, and M. S. Tungatarova. Numerical simulation of thermal energy storage based on phase change materials. Bulg. Chem. Commun., vol. 48, Spec. Iss. E, pp. 181–188, 2016

    Google Scholar 

  61. E.M. Anghel, A. Georgiev, S. Petrescu, R. Popov, M. Constantinescu, Thermo-physical characterization of some paraffins used as phase change materials for thermal energy storage. J. Therm. Anal. Calorim. 117, 557–566 (2014)

    Google Scholar 

  62. F.L. Tan, S.F. Hosseinizadeh, J.M. Khodadadi, L. Fan, Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int. J. Heat Mass Transf. 52, 3464–3472 (2009)

    CAS  Google Scholar 

  63. J. H. Leinhard IV, J. H. Leinhard V, A Heat Transfer Textbook, 3rd ed. Cambridge MA, Phlogiston Press, 2008

    Google Scholar 

  64. COMSOL, Multiphysics Model Library (COMSOL Inc., 2012)

    Google Scholar 

  65. S. Yadav, A.B. Lingayat, V.P. Chandramohan, V.R.K. Raju, Numerical analysis on thermal energy storage device to improve the drying time of indirect type solar dryer, in Heat and Mass Transfer, (Springer, Cham, 2018). https://doi.org/10.1007/s00231-018-2390-7

    Chapter  Google Scholar 

  66. S. Yadav, V.P. Chandramohan, Performance comparison of thermal energy storage system for indirect solar dryer with and without finned copper tube. Sustainable Energy Technologies and Assessments 37, 1006 (2020)

    Google Scholar 

  67. E. Tarigan, Mathematical modeling and simulation of a solar agricultural dryer with back-up biomass burner and thermal storage. Case Studies in Thermal Engineering 12, 149–165 (2018)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Fund, Bulgaria, Contract No KP-06-INDIA/11/02.09.2019 and the Department of Science and Technology, India (DST/INT/P-04/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dzhonova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, J. et al. (2022). Modeling and Simulation of Phase Change Material Based Thermal Energy Accumulators in Small-Scale Solar Thermal Dryers. In: Boyadjiev, C. (eds) Modeling and Simulation in Chemical Engineering. Heat and Mass Transfer. Springer, Cham. https://doi.org/10.1007/978-3-030-87660-9_8

Download citation

Publish with us

Policies and ethics