Skip to main content

Medical Data Engineering – Theory and Practice

  • 250 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 1481)

Abstract

Data integration and exchange are becoming more crucial with the increasing amount of distributed systems and ever-growing amounts of data. This need is also widely known in medical research and not yet comprehensively solved. Practical implementation steps will demonstrate the different challenges in the context of the National Medical Informatics Initiative in Germany. Top-down versus bottom-up approaches as general methods of standard-based data integration in healthcare will be discussed and illustrated in the process of building up Medical Data Integration Centers. As practical examples, the use cases Infection Control, Cardiology, and Molecular Tumor Board, will be presented. Finally, limitations that prevent the use of theoretically recommended data integration methods in the particular field of medical informatics are illustrated.

Keywords

  • Data integration
  • Medical informatics
  • Data management

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-87657-9_21
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-87657-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Snyder, J.M., Pawloski, J.A., Poisson, L.M.: Developing real-world evidence-ready datasets: time for clinician engagement. Curr. Oncol. Rep. 22(5), 1–8 (2020). https://doi.org/10.1007/s11912-020-00904-z

    CrossRef  Google Scholar 

  2. Panch, T., Mattie, H., Celi, L.A.: The “inconvenient truth” about AI in healthcare. npj Digit. Med. 2(1), 1–3 (2019). https://doi.org/10.1038/s41746-019-0155-4

  3. Hübner, U., Esdar, M., Hüsers, J., Liebe, J., Naumann, L., Thye, J., et al.: IT-Report Gesundheitswesen, Schwerpunkt - Wie reif ist die Gesundheits-IT aus Anwenderperspektive? Schriftenreihe der Hochschule Osnabrück, Forschungsgruppe Informatik im Gesundheitswesen (IGW) (2020)

    Google Scholar 

  4. Lehne, M., Sass, J., Essenwanger, A., Schepers, J., Thun, S.: Why digital medicine depends on interoperability. NPJ Digit. Med. 2, 79 (2019). https://doi.org/10.1038/s41746-019-0158-1

    CrossRef  Google Scholar 

  5. Feldman, K., Johnson, R.A., Chawla, N.V.: The state of data in healthcare: path towards standardization. J. Healthc. Inform. Res. 2(3), 248–271 (2018). https://doi.org/10.1007/s41666-018-0019-8

    CrossRef  Google Scholar 

  6. Council, N.R.: Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease, Washington, DC . The National Academies Press (2011). https://doi.org/10.17226/13284

  7. Amos, L., Anderson, D., Brody, S., Ripple, A., Humphreys, B.L.: UMLS users and uses: a current overview. J. Am. Med. Inform. Assoc. 27, 1606–1611 (2020). https://doi.org/10.1093/jamia/ocaa084

    CrossRef  Google Scholar 

  8. Ghazvinian, A., Noy, N.F., Musen, M.A.: How orthogonal are the OBO foundry ontologies? J. Biomed. Semant. 2(Suppl. 2), S2 (2011). https://doi.org/10.1186/2041-1480-2-S2-S2

  9. Hulsen, T., Jamuar, S.S., Moody, A.R., Karnes, J.H., Varga, O., Hedensted, S., et al.: From big data to precision medicine. Front. Med. 6, 34 (2019). https://doi.org/10.3389/fmed.2019.00034

    CrossRef  Google Scholar 

  10. Semler, S.C., Wissing, F., Heyder, R.: German medical informatics initiative. Methods Inf. Med. 57(S 1), e50–e56 (2018). https://doi.org/10.3414/ME18-03-0003

  11. IEEE: IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. IEEE Std. 610, pp. 1–217, January 1991. https://doi.org/10.1109/IEEESTD.1991.106963

  12. Bezerra, C.A.C., Araujo, A., Rocha, B., Pereira, V., Ferraz, F.: Middleware for heterogeneous healthcare data exchange: a survey. In: ICSEA 2015, pp. 409–414 (2015)

    Google Scholar 

  13. Benson, T., Grieve, G.: Principles of Health Interoperability: FHIR, HL7 and SNOMED CT. Health Information Technology Standards, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-56883-2

    CrossRef  Google Scholar 

  14. Goossen, W., Goossen-Baremans, A., van der Zel, M.: Detailed clinical models: a review. Healthc. Inform. Res. 16(4), 201–214 (2010). https://doi.org/10.4258/hir.2010.16.4.201

    CrossRef  Google Scholar 

  15. Hong, N., Wang, K., Wu, S., Shen, F., Yao, L., Jiang, G.: An interactive visualization tool for HL7 FHIR specification browsing and profiling. J. Healthc. Inform. Res. 3(3), 329–344 (2019). https://doi.org/10.1007/s41666-018-0043-8

    CrossRef  Google Scholar 

  16. Wulff, A., Haarbrandt, B., Marschollek, M.: Clinical knowledge governance framework for nationwide data infrastructure projects. In: eHealth, pp. 196–203 (2018)

    Google Scholar 

  17. LeSueur, D.: 5 Reasons Healthcare Data is Unique and Difficult to Measure (2014). https://www.healthcatalyst.com/insights/5-reasons-healthcare-data-is-difficult-to-measure Accessed 9 Apr 2021

  18. Ulrich, H., Kock, A.K., Duhm-Harbeck, P., Habermann, J.K., Ingenerf, J.: Metadata repository for improved data sharing and reuse based on HL7 FHIR. In: MIE, pp. 162–166 (2016)

    Google Scholar 

  19. Kock-Schoppenhauer, A.K., Kroll, B., Lambarki, M., Ulrich, H., Stahl-Toyota, S., Habermann, J.K., et al.: One step away from technology but one step towards domain experts-MDRBridge: a template-based ISO 11179-compliant metadata processing pipeline. Methods Inf. Med. 58(S 02), e72–e79 (2019). https://doi.org/10.1055/s-0039-3399579

  20. Mate, S., Kampf, M., Rödle, W., Kraus, S., Proynova, R., Silander, K., et al.: Pan-European data harmonization for biobanks in ADOPT BBMRI-ERIC. Appl. Clin. Inform. 10(04), 679–692 (2019)

    CrossRef  Google Scholar 

  21. Haarbrandt, B., Schreiweis, B., Rey, S., Sax, U., Scheithauer, S., Rienhoff, O., et al.: HiGHmed - an open platform approach to enhance care and research across institutional boundaries. Methods Inf. Med. 57(S 01), e66–e81 (2018). https://doi.org/10.3414/ME18-02-0002

  22. Prokosch, H.U., Acker, T., Bernarding, J., Binder, H., Boeker, M., Boerries, M., et al.: MIRACUM: medical informatics in research and care in university medicine: a large data sharing network to enhance translational research and medical care. Methods Inf. Med. 57(S 01), e82–e91 (2018). https://doi.org/10.3414/ME17-02-0025

  23. Bild, R., Bialke, M., Buckow, K., Ganslandt, T., Ihrig, K., Jahns, R., et al.: Towards a comprehensive and interoperable representation of consent-based data usage permissions in the German medical informatics initiative. BMC Med. Inf. Decis. Mak. 20 (2020). https://doi.org/10.1186/s12911-020-01138-6

  24. Buechner, P., Hinderer, M., Unberath, P., Metzger, P., Boeker, M., Acker, T., et al.: Requirements analysis and specification for a molecular tumor board platform based on cBioPortal. Diagnostics 10(2), 93 (2020). https://doi.org/10.3390/diagnostics10020093

    CrossRef  Google Scholar 

  25. Kapsner, L.A., Kampf, M.O., Seuchter, S.A., Gruendner, J., Gulden, C., Mate, S., et al.: Reduced rate of inpatient hospital admissions in 18 German university hospitals during the COVID-19 Lockdown. Front. Public Health 8, 1018 (2021)

    CrossRef  Google Scholar 

  26. Miloslavskaya, N., Tolstoy, A.: Big data, fast data and data lake concepts. Procedia Comput. Sci. 88, 300–305 (2016)

    CrossRef  Google Scholar 

  27. Allen, M., Cervo, D.: Chapter 9 - Data quality management. In: Allen, M., Cervo, D. (eds.) Multi-Domain Master Data Management, pp. 131–160. Morgan Kaufmann (2015). https://doi.org/10.1016/B978-0-12-800835-5.00009-9

  28. International Standards Organization: ISO 13606–1:2008 - Health informatics - electronic health record communication - Part 1: reference model. https://www.iso.org/standard/67868.html Accessed 9 Apr 2021

  29. Sass, J., Bartschke, A., Lehne, M., Essenwanger, A., Rinaldi, E., Rudolph, S., et al.: The german corona consensus dataset (GECCO): a standardized dataset for COVID-19 research in university medicine and beyond. BMC Med. Inform. Decis. Mak. 20(1) (2020). https://doi.org/10.1186/s12911-020-01374-w

  30. Vasileiou, E., Simpson, C., Robertson, C., Shi, T., Kerr, S., Agrawal, U., et al.: Effectiveness of first dose of COVID-19 vaccines against hospital admissions in Scotland: national prospective cohort study of 5.4 million people. Preprint, February 2021. https://doi.org/10.2139/ssrn.3789264

  31. Schmid, T.: Costs of treating cardiovascular events in Germany: a systematic literature review. Health Econ. Rev. 5(1), 27 (2015). https://doi.org/10.1186/s13561-015-0063-5

    CrossRef  Google Scholar 

  32. Faller, H., Steinbüchel, T., Schowalter, M., Spertus, J.A., Störk, S., Angermann, C.E.: Der Kansas City Cardiomyopathy Questionnaire (KCCQ) - ein neues krankheitsspezifisches Messinstrument zur Erfassung der Lebensqualität bei chronischer Herzinsuffizienz: Psychometrische Prüfung der deutschen Version. PPmP - Psychotherapie \(\cdot \) Psychosomatik \(\cdot \) Medizinische Psychologie 55(3/4), 200–208 (2005). https://doi.org/10.1055/s-2004-834597

  33. Heinze, O., Brandner, A., Bergh, B.: Establishing a personal electronic health record in the Rhine-Neckar region. Stud. Health Technol. Inform. 150, 119–119 (2009)

    Google Scholar 

  34. Singer, J., Irmisch, A., Ruscheweyh, H.J., Singer, F., Toussaint, N.C., Levesque, M.P., et al.: Bioinformatics for precision oncology. Brief. Bioinform. 20(3), 778–788 (2019). https://doi.org/10.1093/bib/bbx143

    CrossRef  Google Scholar 

  35. Hoefflin, R., Geißler, A.L., Fritsch, R., Claus, R., Wehrle, J., Metzger, P., et al.: Personalized clinical decision making through implementation of a molecular tumor board: a German single-center experience. JCO Precis. Oncol., 1–16 (2018). https://doi.org/10.1200/PO.18.00105

  36. Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., et al.: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data: figure 1. Cancer Discov. 2(5), 401–404 (2012). https://doi.org/10.1158/2159-8290.CD-12-0095

    CrossRef  Google Scholar 

  37. Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., et al.: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6(269), pl1-pl1 (2013). https://doi.org/10.1126/scisignal.2004088

  38. Bruford, E.A., Braschi, B., Denny, P., Jones, T.E.M., Seal, R.L., Tweedie, S.: Guidelines for human gene nomenclature. Nat. Genet. 52(8), 754–758 (2020). https://doi.org/10.1038/s41588-020-0669-3

    CrossRef  Google Scholar 

  39. Reimer, N., Ulrich, H., Busch, H., Kock-Schoppenhauer, A.K., Ingenerf, J.: openEHR mapper - a tool to fusion clinical and genomic data using the openEHR standard. In: Studies in Health Technology and Informatics (2021)

    Google Scholar 

  40. Arenas, M., Barceló, P., Libkin, L., Murlak, F.: Foundations of Data Exchange. Cambridge University Press (2014). https://doi.org/10.1017/CBO9781139060158

  41. do Espírito Santo, J.M., Medeiros, C.B.: Semantic interoperability of clinical data. In: Da Silveira, M., Pruski, C., Schneider, R. (eds.) DILS 2017. LNCS, vol. 10649, pp. 29–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69751-2_4

    CrossRef  Google Scholar 

  42. Dugas, M., Jöckel, K.H., Friede, T., Gefeller, O., Kieser, M., Marschollek, M., et al.: Memorandum “open metadata”. Open access to documentation forms and item catalogs in healthcare. Methods Inf. Med. 54(4), 376–378 (2015). https://doi.org/10.3414/ME15-05-0007

  43. Golshan, B., Halevy, A., Mihaila, G., Tan, W.C.: Data integration: after the teenage years. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, pp. 101–106. Association for Computing Machinery, New York, May 2017. https://doi.org/10.1145/3034786.3056124

  44. Senthilkumar, S., Rai, B.K., Meshram, A.A., Gunasekaran, A., Chandrakumarmangalam, S.: Big data in healthcare management: a review of literature. Am. J. Theor. Appl. Bus. 4(2), 57–69 (2018)

    CrossRef  Google Scholar 

  45. Névéol, A., Dalianis, H., Velupillai, S., Savova, G., Zweigenbaum, P.: Clinical natural language processing in languages other than English: opportunities and challenges. J. Biomed. Semant. 9(1), 12 (2018). https://doi.org/10.1186/s13326-018-0179-8

    CrossRef  Google Scholar 

  46. Dinu, V., Nadkarni, P.: Guidelines for the effective use of entity-attribute-value modeling for biomedical databases. Int. J. Med. Inf. 76(11–12), 769–779 (2007). https://doi.org/10.1016/j.ijmedinf.2006.09.023

    CrossRef  Google Scholar 

  47. Groppe, S.: Data Management and Query Processing in Semantic Web Databases. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19357-6

  48. Kock-Schoppenhauer, A.K., Kamann, C., Ulrich, H., Duhm-Harbeck, P., Ingenerf, J.: Linked data applications through ontology based data access in clinical research. Stud. Health Technol. Inform. 235, 131–135 (2017)

    Google Scholar 

  49. Verborgh, R., Vander Sande, M.: The Semantic Web identity crisis: in search of the trivialities that never were. Semant. Web J. 11(1), 19–27 (2020). https://doi.org/10.3233/SW-190372

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work is funded by the German Federal Ministry of Education and Research (BMBF) as part of the Medical Informatics Initiative Germany, Grand IDs 01ZZ1802Z and 01ZZ1802T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann-Kristin Kock-Schoppenhauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kock-Schoppenhauer, AK. et al. (2021). Medical Data Engineering – Theory and Practice. In: Bellatreche, L., Chernishev, G., Corral, A., Ouchani, S., Vain, J. (eds) Advances in Model and Data Engineering in the Digitalization Era. MEDI 2021. Communications in Computer and Information Science, vol 1481. Springer, Cham. https://doi.org/10.1007/978-3-030-87657-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87657-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87656-2

  • Online ISBN: 978-3-030-87657-9

  • eBook Packages: Computer ScienceComputer Science (R0)