Skip to main content

Whole Energy Systems Evaluation: A Methodological Framework and Case Study

  • Chapter
  • First Online:
Whole Energy Systems

Abstract

This chapter presents a methodological framework for whole energy systems evaluation with underpinning principles, demonstrated through a case study. The framework provides a socio-technical approach for evaluation by combining stakeholders’ requirements with the system components and functions through a system-of-systems architecture methodology. The framework application involves three stages: scenario formulation, conceptual modelling and quantitative modelling, in an iterative process of feedback between the stages. The proposed framework is applied on a case study to evaluate the effectiveness of energy systems integration as a pathway for achieving the energy transition objectives. The case study is based on the local energy system of the North of Tyne region, UK. The case study demonstrates the framework application and presents evidence on the potential of energy systems integration in the region via vector-coupling technologies, including combined heat and power, power-to-gas and heat pumps, under different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lund, P. D., Lindgren, J., Mikkola, J., & Salpakari, J. (2015). Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renewable and Sustainable Energy Reviews, 45, 785–807.

    Article  Google Scholar 

  2. Singh, H. V., Bocca, R., Gomez, P., et al. (2019). The energy transitions index: An analytic framework for understanding the evolving global energy system. Energy Strategy Reviews, 26, 100382. https://doi.org/10.1016/j.esr.2019.100382

    Article  Google Scholar 

  3. Jamasb, T., & Llorca, M. (2019). Energy systems integration: Economics of a new paradigm. Economics of Energy and Environmental Policy, 8, 7–28. https://doi.org/10.5547/2160-5890.8.2.tjam

    Article  Google Scholar 

  4. Guelpa, E., Bischi, A., Verda, V., et al. (2019). Towards future infrastructures for sustainable multi-energy systems: A review. Energy, 184, 2–21. https://doi.org/10.1016/j.energy.2019.05.057

    Article  Google Scholar 

  5. Hosseini, S. H. R., Allahham, A., Walker, S. L., & Taylor, P. (2020). Optimal planning and operation of multi-vector energy networks: A systematic review. Renewable and Sustainable Energy Reviews, 133, 110216.

    Article  Google Scholar 

  6. Hanna, R., Gazis, E., Edge, J., et al. (2018). Unlocking the potential of Energy Systems Integration. https://imperialcollegelondon.app.box.com/s/0sil57fndc5tn9gfy6ypzp8v61qnv3mg

  7. Mancarella, P. (2014). MES (multi-energy systems): An overview of concepts and evaluation models. Energy, 65, 1–17.

    Article  Google Scholar 

  8. Abeysekera, M., Wu, J., Jenkins, N. (2016). Integrated energy systems: An overview of benefits, analysis methods, research gaps and opportunities. In: HubNET position Pap. Ser. https://orca.cf.ac.uk/133441/1/HubNET Position paper-Multi Energy-Revised version.pdf.

  9. Berjawi, A. E. H., Walker, S. L., Patsios, C., & Hosseini, S. H. R. (2021). An evaluation framework for future integrated energy systems: A whole energy systems approach. Renewable and Sustainable Energy Reviews, 145, 111163. https://doi.org/10.1016/j.rser.2021.111163

    Article  Google Scholar 

  10. Kroposki, B., Garrett, B., Macmillan, S., et al. (2012). Energy Systems Integration: A Convergence of Ideas.

    Google Scholar 

  11. O’Malley, M., Kroposki, B., Hannegan, B., et al. (2016) Energy systems integration: Defining and describing the value proposition. Nrel/Tp-5D00–66616 9. https://doi.org/10.2172/1257674.

  12. Ramsebner, J., Haas, R., Ajanovic, A., & Wietschel, M. (2021). The sector coupling concept: A critical review. Wiley Interdisciplinary Reviews: Energy and Environment, 10.

    Google Scholar 

  13. Kriechbaum, L., Scheiber, G., & Kienberger, T. (2018). Grid-based multi-energy systems-modelling, assessment, open source modelling frameworks and challenges. Energy, Sustainability and Society, 8.

    Google Scholar 

  14. Heendeniya, C. B., Sumper, A., & Eicker, U. (2020). The multi-energy system co-planning of nearly zero-energy districts – Status-quo and future research potential. Applied Energy, 267. https://doi.org/10.1016/j.apenergy.2020.114953

  15. Wang, J., Zong, Y., You, S., & Træholt, C. (2017). A review of Danish integrated multi-energy system flexibility options for high wind power penetration. Clean Energy, 1, 23–35.

    Article  Google Scholar 

  16. Witkowski, K., Haering, P., Seidelt, S., & Pini, N. (2020). Role of thermal technologies for enhancing flexibility in multi-energy systems through sector coupling: Technical suitability and expected developments. IET Energy Systems Integration, 2, 69–79. https://doi.org/10.1049/iet-esi.2019.0061

    Article  Google Scholar 

  17. Cambini, C., Congiu, R., Jamasb, T., et al. (2020). Energy systems integration: Implications for public policy. Energy Policy. https://doi.org/10.1016/j.enpol.2020.111609

  18. Leitner, B., Widl, E., Gawlik, W., & Hofmann, R. (2019). A method for technical assessment of power-to-heat use cases to couple local district heating and electrical distribution grids. Energy, 182, 729–738. https://doi.org/10.1016/j.energy.2019.06.016

    Article  Google Scholar 

  19. Hosseini, S. H. R., Allahham, A., & Adams, C. (2021). Techno-economic-environmental analysis of a smart multi-energy grid utilising geothermal energy storage for meeting heat demand. IET Smart Grid, 4, 224–240. https://doi.org/10.1049/stg2.12020

    Article  Google Scholar 

  20. Mancarella, P., Chicco, G., & Capuder, T. (2018). Arbitrage opportunities for distributed multi-energy systems in providing power system ancillary services. Energy, 161, 381–395. https://doi.org/10.1016/j.energy.2018.07.111

    Article  Google Scholar 

  21. Moslehi, S., & Reddy, T. A. (2018). Sustainability of integrated energy systems: A performance-based resilience assessment methodology. Applied Energy, 228, 487–498. https://doi.org/10.1016/j.apenergy.2018.06.075

    Article  Google Scholar 

  22. Neely, K., Bortz, M., & Bice, S. (2021). Using collaborative conceptual modelling as a tool for transdisciplinarity. Evid Policy, 17, 161–172. https://doi.org/10.1332/174426419X15468578119304

    Article  Google Scholar 

  23. Energy Systems Catapult (2019). Systems thinking in the energy system: A primer to a complex world. https://es.catapult.org.uk/wp-content/uploads/2019/05/System-thinking-in-the-energy-system-dec-final.pdf. Accessed 28 Aug 2020.

  24. Bale, C. S. E., Varga, L., & Foxon, T. J. (2015). Energy and complexity: New ways forward. Applied Energy, 138, 150–159.

    Article  Google Scholar 

  25. Mangoyana, R. B., Smith, T. F., & Simpson, R. (2013). A systems approach to evaluating sustainability of biofuel systems. Renewable and Sustainable Energy Reviews, 25, 371–380. https://doi.org/10.1016/j.rser.2013.05.003

    Article  Google Scholar 

  26. Ingram, C., Payne, R., Perry, S., et al. (2014). Modelling patterns for systems of systems architectures. In 8th annual IEEE international systems conference, SysCon 2014 - proceedings (pp. 146–153).

    Chapter  Google Scholar 

  27. Geyer, P., & Buchholz, M. (2012). Parametric systems modeling for sustainable energy and resource flows in buildings and their urban environment. In Automation in construction (pp. 70–80).

    Google Scholar 

  28. Nielsen, C. B., Larsen, P. G., Fitzgerald, J., et al. (2015). Systems of Systems Engineering: Basic concepts, model-based techniques, and research directions. ACM Computing Surveys, 48, 1–41. https://doi.org/10.1145/2794381

    Article  Google Scholar 

  29. Holt, J., Perry, S., Payne, R., et al. (2015). A model-based approach for requirements engineering for systems of systems. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2014.2312051

  30. Perry, S., Holt, J. (2014). Definition of the COMPASS Architectural Framework Framework. http://www.compass-research.eu/Project/Deliverables/D21.5b.pdf. Accessed 29 Nov 2020.

  31. Holt, J., Perry, S. (2011). SysML for Systems Engineering.

    Google Scholar 

  32. Holt, J., Perry, S., Hansen, F. O., Hallerstede, S. (2012). Report on guidelines for sos requirements. In: COMPASS Deliv. http://www.compass-research.eu/Project/Deliverables/D211.pdf

  33. North East LEP (2019). North East Energy for Growth. https://www.northeastlep.co.uk/wp-content/uploads/2019/09/full-strategy-energy-for-growth-strategy.pdf. Accessed 8 Mar 2021.

  34. BEIS (2020). Sub-national electricity consumption data - GOV.UK. https://www.gov.uk/government/collections/sub-national-electricity-consumption-data. Accessed 8 Mar 2021.

  35. BEIS (2020). Regional Renewable Statistics - GOV.UK. https://www.gov.uk/government/statistics/regional-renewable-statistics. Accessed 8 Mar 2021.

  36. BEIS (2020). UK local authority and regional carbon dioxide emissions national statistics: 2005 to 2018 - GOV.UK. https://www.gov.uk/government/statistics/uk-local-authority-and-regional-carbon-dioxide-emissions-national-statistics-2005-to-2018. Accessed 10 Mar 2021.

  37. Love, J., Smith, A. Z. P., Watson, S., et al. (2017). The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial. Applied Energy, 204, 332–342. https://doi.org/10.1016/j.apenergy.2017.07.026

    Article  Google Scholar 

  38. Hosseini, S. H. R., Allahham, A., & Taylor, P. (2018). Techno-economic-environmental analysis of integrated operation of gas and electricity networks. In Proceedings - IEEE international symposium on circuits and systems.

    Google Scholar 

  39. Hosseini, S. H. R., Allahham, A., Vahidinasab, V., et al. (2021). Techno-economic-environmental evaluation framework for integrated gas and electricity distribution networks considering impact of different storage configurations. International Journal of Electrical Power & Energy Systems, 125. https://doi.org/10.1016/j.ijepes.2020.106481

  40. Berjawi, A. E. H, Allahham, A. (2021) NoT Parameters. https://doi.org/10.25405/data.ncl.14614179

  41. OFGEM (2021). Estimated network costs per domestic customer (GB average) | Ofgem. https://www.ofgem.gov.uk/data-portal/estimated-network-costs-domestic-customer-gb-average. Accessed 12 Apr 2021.

  42. BEIS (2020). Greenhouse gas reporting: conversion factors 2020 - GOV.UK. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2020. Accessed 12 Apr 2021.

  43. BEIS (2020). BEIS Electricity Generation Costs (2020) - GOV.UK. https://www.gov.uk/government/publications/beis-electricity-generation-costs-2020. Accessed 12 Apr 2021.

  44. McDonagh, S., O’Shea, R., Wall, D. M., et al. (2018). Modelling of a power-to-gas system to predict the levelised cost of energy of an advanced renewable gaseous transport fuel. Applied Energy, 215, 444–456. https://doi.org/10.1016/j.apenergy.2018.02.019

    Article  Google Scholar 

  45. Hansen, K. (2019). Decision-making based on energy costs: Comparing levelized cost of energy and energy system costs. Energy Strategy Reviews, 24, 68–82. https://doi.org/10.1016/j.esr.2019.02.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali El Hadi Berjawi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berjawi, A.E.H., Allahham, A., Walker, S.L., Patsios, C., Hosseini, S.H.R. (2022). Whole Energy Systems Evaluation: A Methodological Framework and Case Study. In: Vahidinasab, V., Mohammadi-Ivatloo, B. (eds) Whole Energy Systems . Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-87653-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87653-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87652-4

  • Online ISBN: 978-3-030-87653-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics