Skip to main content

Concept, Definition, Enabling Technologies, and Challenges of Energy Integration in Whole Energy Systems To Create Integrated Energy Systems

  • Chapter
  • First Online:
Whole Energy Systems

Abstract

In recent years, the vector coupling of energy systems is in progress by integrating different energy vectors such as power, heat, and gas and also integration of different sectors such as residential, transportation, commercial, and industry parts for efficient utilization of energy sources such as natural gas, coal, diesel, and renewable energy sources. The energy crisis, air pollution issues, increasing trend of energy consumption, reliability issues, and especially increasing the share of variable renewable energy sources are the major drivers of this transition. Interaction among energy systems is achieved through a real or physical node or even a virtual node so-called the energy hub or multi-energy node. Enabling technologies for integrating energy systems are energy conversion systems (such as cogeneration and trigeneration systems, heat pumps, diesel generator, and boilers), energy storage systems (such as battery, thermal, cold, and hydrogen storage), information and communication technologies, and particularly decarbonizing components. Demand-side management is also essential for energy integration since it contributes to energy conservation and flexibility of energy demands. In this chapter, the concept and definition of vector-coupling concept in the whole energy systems is discussed. In addition, enabling technologies and challenges associated with integrating energy vectors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abeysekera, M., & Wu, J. (2015). Method for simultaneous power flow analysis in coupled multi-vector energy networks. Energy Procedia, 75, 1165–1171.

    Article  Google Scholar 

  2. Aduda, K. O., Zeiler, W., Boxem, G., & Labeodan, T. (2014). On defining information and communication technology requirements and associated challenges for ‘energy and comfort active’ buildings. Procedia Computer Science, 32, 979–984.

    Article  Google Scholar 

  3. Ameri, M., & Besharati, Z. (2016). Optimal design and operation of district heating and cooling networks with CCHP systems in a residential complex (Vol. 110). Elsevier B.V.

    Google Scholar 

  4. Arabzadeh, V., Mikkola, J., Jasiūnas, J., & Lund, P. D. (2020). Deep decarbonization of urban energy systems through renewable energy and sector-coupling flexibility strategies. Journal of Environmental Management, 260(January).

    Google Scholar 

  5. Asare-Bediako, B., Ribeiro, P. F., & Kling, W. L. (2012). Integrated energy optimization with smart home energy management systems. In IEEE PES innovative smart grid technologies conference Europe (pp. 1–8).

    Google Scholar 

  6. Barma, M. C., Saidur, R., Rahman, S. M. A., Allouhi, A., Akash, B. A., & Sait, S. M. (2017). A review on boilers energy use, energy savings, and emissions reductions. Renewable and Sustainable Energy Reviews, 79, 970–983.

    Article  Google Scholar 

  7. Bartolini, A., Carducci, F., Muñoz, C. B., & Comodi, G. (2020). Energy storage and multi energy systems in local energy communities with high renewable energy penetration. Renewable Energy, 159, 595–609.

    Article  Google Scholar 

  8. Brown, M. A., & Li, Y. (2019). Carbon pricing and energy efficiency: Pathways to deep decarbonization of the US electric sector. Energy Efficiency, 12(2), 463–481.

    Article  Google Scholar 

  9. Bühler, F., Zühlsdorf, B., Van Nguyen, T., & Elmegaard, B. (2019). A comparative assessment of electrification strategies for industrial sites: Case of milk powder production. Applied Energy, 250(April), 1383–1401.

    Article  Google Scholar 

  10. Bühler, F., Holm, F. M., & Elmegaard, B. (2019). Potentials for the electrification of industrial processes in Denmark. In ECOS 2019 - proceedings of the 32nd international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems (pp. 2137–2152).

    Google Scholar 

  11. Canale, L., Rita, A., Fazio, D., Russo, M., & Frattolillo, A. (2021). An overview on functional integration of hybrid renewable energy systems in Multi-Energy Buildings. Energies, 14(4), 1078.

    Article  Google Scholar 

  12. Carradore, L., & Turri, R. (2009). Modeling and simulation of multi-vector energy systems. In 2009 IEEE Bucharest PowerTech: Innovative ideas toward the electrical grid of the future.

    Google Scholar 

  13. Chicco, G., Riaz, S., Mazza, A., & Mancarella, P. (2020). Flexibility from distributed multienergy systems. Proceedings of the IEEE, 108(9), 1496–1517.

    Article  Google Scholar 

  14. Cho, H., Smith, A. D., & Mago, P. (2014). Combined cooling, heating and power: A review of performance improvement and optimization. Applied Energy, 136, 168–185.

    Article  Google Scholar 

  15. Connolly, D., Lund, H., Mathiesen, B. V., & Leahy, M. (2010). A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy, 87(4), 1059–1082.

    Article  Google Scholar 

  16. Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.

    Article  Google Scholar 

  17. Devlin, J., Li, K., Higgins, P., & Foley, A. (2017). A multi vector energy analysis for interconnected power and gas systems. Applied Energy, 192, 315–328.

    Article  Google Scholar 

  18. Dolatabadi, A., Mohammadi-Ivatloo, B., Abapour, M., & Tohidi, S. (2017). Optimal stochastic design of wind integrated energy hub. IEEE Transactions on Industrial Informatics, 13(5).

    Google Scholar 

  19. Favre-Perrod, P., Kienzle, F., & Andersson, G. (2010). Modeling and design of future multi-energy generation and transmission systems. European Transactions on Electrical Power, 20(8), 994–1008.

    Article  Google Scholar 

  20. Geidl, M., Koeppel, G., Favre-Perrod, P., Klöckl, B., Andersson, G., & Fröhlich, K. (2007). Energy hubs for the future. IEEE Power & Energy Magazine, 5(1), 24–30.

    Article  Google Scholar 

  21. Good, N., Martínez Ceseña, E. A., Zhang, L., & Mancarella, P. (2016). Techno-economic and business case assessment of low carbon technologies in distributed multi-energy systems. Applied Energy, 167, 158–172.

    Article  Google Scholar 

  22. Guelpa, E., Bischi, A., Verda, V., Chertkov, M., & Lund, H. (2019). Towards future infrastructures for sustainable multi-energy systems: A review. Energy, 184, 2–21.

    Article  Google Scholar 

  23. Hauser, P., Heidari, S., Weber, C., & Möst, D. (2019). Does increasing natural gas demand in the power sector pose a threat of congestion to the German gas grid? A model-coupling approach. Energies, 12(11), 1–22.

    Article  Google Scholar 

  24. Heidari, S. (2020). How strategic behavior of natural gas exporters can affect the sectors of electricity, heating, and emission trading during the European energy transition. Energies, 13(19).

    Google Scholar 

  25. Huang, J., Fan, J., & Furbo, S. (2020). Demonstration and optimization of a solar district heating system with ground source heat pumps. Solar Energy, 202, 171–189.

    Article  Google Scholar 

  26. Ilo, A. (2020). Use cases in sector coupling as part of the link -based holistic architecture to increase the grid flexibility. In Proceedings of the CIRED 2020 Berlin workshop, Berlin, Germany (pp. 22–23).

    Google Scholar 

  27. Jacobs, T., et al. (2016). Increasing the utilization ratio of photovoltaic energy by network hybridization. In Proceedings - 2016 IEEE international conferences on big data and cloud computing, BDCloud 2016, social computing and networking, SocialCom 2016 and sustainable computing and communications, SustainCom 2016 (pp. 445–452).

    Google Scholar 

  28. Khezri, R., Oshnoei, A., Hagh, M. T., & Muyeen, S. M. (2018). Coordination of heat pumps, electric vehicles and AGC for efficient LFC in a smart hybrid power system via SCA-based optimized FOPID controllers. Energies, 11(2).

    Google Scholar 

  29. Koj, J. C., Wulf, C., & Zapp, P. (2019). Environmental impacts of power-to-X systems - a review of technological and methodological choices in life cycle assessments. Renewable and Sustainable Energy Reviews, 112, 865–879.

    Article  Google Scholar 

  30. Kriechbaum, L., Scheiber, G., & Kienberger, T. (2018). Grid-based multi-energy systems-modelling, assessment, open source modelling frameworks and challenges. Energy, Sustainability and Society, 8(1).

    Google Scholar 

  31. Lazzaro, M., et al. (2019., no. 731268). Smart ICT framework for the intelligent management of different modern energy systems. In Proceedings - 2019 IEEE international conference on environment and electrical engineering and 2019 IEEE industrial and commercial power systems Europe, EEEIC/I and CPS Europe 2019 (pp. 1–6).

    Google Scholar 

  32. Lechtenböhmer, S., Nilsson, L. J., Åhman, M., & Schneider, C. (2016). Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand. Energy, 115, 1623–1631.

    Article  Google Scholar 

  33. Lee, H., Jung, S., Cho, Y., Yoon, D., & Jang, G. (2013). Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system. Physica C: Superconductivity and its Applications, 494, 246–249.

    Article  Google Scholar 

  34. Li, B., & Roche, R. (2020). Optimal scheduling of multiple multi-energy supply microgrids considering future prediction impacts based on model predictive control. Energy, 197, 117180.

    Article  Google Scholar 

  35. Li, H., Fu, L., Geng, K., & Jiang, Y. (2006). Energy utilization evaluation of CCHP systems. Energy and Buildings, 38(3), 253–257.

    Article  Google Scholar 

  36. Li, G., et al. (2017). Optimal dispatch strategy for integrated energy systems with CCHP and wind power. Applied Energy, 192, 408–419.

    Article  Google Scholar 

  37. Liu, X., & Mancarella, P. (2016). Modelling, assessment and Sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems. Applied Energy, 167, 336–352.

    Article  Google Scholar 

  38. Liu, D., Wang, L., Qin, G., & Liu, M. (2020). Power load demand forecasting model and method based on multi-energy coupling. Applied Sciences, 10(2), 1–24.

    Article  Google Scholar 

  39. Lo Basso, G., de Santoli, L., Paiolo, R., & Losi, C. (2021). The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model. Renewable Energy, 164, 472–490.

    Article  Google Scholar 

  40. Lund, P. D., Mikkola, J., & Ypyä, J. (2015). Smart energy system design for large clean power schemes in urban areas. Journal of Cleaner Production, 103, 437–445.

    Article  Google Scholar 

  41. Mallikarjuna, M., Khanam, A., & Poonia, A. (2018). Smart grids: A perspective on the integration and encapsulation of power energy systems with ICT systems-new research directions and challenges. In Proceedings of the 2017 international conference on smart Technology for Smart Nation, SmartTechCon 2017 (pp. 648–654).

    Google Scholar 

  42. Mancarella, P. (2014). MES (multi-energy systems): An overview of concepts and evaluation models. Energy, 65, 1–17.

    Article  Google Scholar 

  43. Mancarella, P., & Chicco, G. (2013). Real-time demand response from energy shifting in distributed multi-generation. IEEE Transactions on Smart Grid, 4(4), 1928–1938.

    Article  Google Scholar 

  44. Merkel, E., McKenna, R., & Fichtner, W. (2015). Optimisation of the capacity and the dispatch of decentralised micro-CHP systems: A case study for the UK. Applied Energy, 140, 120–134.

    Article  Google Scholar 

  45. Mirzaei, M. A., Nazari-Heris, M., Mohammadi-Ivatloo, B., Zare, K., Marzband, M., & Anvari-Moghaddam, A. (2020). A novel hybrid framework for co-optimization of power and natural gas networks integrated with emerging technologies. IEEE Systems Journal, 14(3), 3598–3608.

    Article  Google Scholar 

  46. Mirzaei, M. A., et al. (2020). Integrated energy hub system based on power-to-gas and compressed air energy storage technologies in the presence of multiple shiftable loads. IET Generation Transmission and Distribution, 14(13), 2510–2519.

    Article  Google Scholar 

  47. Mohammadi, M., Noorollahi, Y., Mohammadi-ivatloo, B., & Yousefi, H. (2017). Energy hub: From a model to a concept – A review. Renewable and Sustainable Energy Reviews, 80.

    Google Scholar 

  48. Mohammadi, M., Noorollahi, Y., Mohammadi-ivatloo, B., Hosseinzadeh, M., Yousefi, H., & Khorasani, S. T. (2018). Optimal management of energy hubs and smart energy hubs – A review. Renewable and Sustainable Energy Reviews, 89.

    Google Scholar 

  49. Moradzadeh, A., Mansour-Saatloo, A., Mohammadi-Ivatloo, B., & Anvari-Moghaddam, A. (2020). Performance evaluation of two machine learning techniques in heating and cooling loads forecasting of residential buildings. Applied Sciences, 10(11), 3829.

    Article  Google Scholar 

  50. Motlagh, N. H., Mohammadrezaei, M., Hunt, J., & Zakeri, B. (2020). Internet of things (IoT) and the energy sector. Energies, 13(2), 1–27.

    Google Scholar 

  51. Nazari-heris, M., Jabari, F., Mohammadi-ivatloo, B., Asadi, S., & Habibnezhad, M. (2020). An updated review on multi-carrier energy systems with electricity, gas, and water energy sources. Journal of Cleaner Production, 123136.

    Google Scholar 

  52. Neirotti, F., Noussan, M., & Simonetti, M. (2020). Towards the electrification of buildings heating - real heat pumps electricity mixes based on high resolution operational profiles. Energy, 195, 116974.

    Article  Google Scholar 

  53. Ni, L., et al. (2018). Optimal operation of electricity, natural gas and heat systems considering integrated demand responses and diversified storage devices. Journal of Modern Power Systems and Clean Energy, 6(3), 423–437.

    Article  Google Scholar 

  54. Niu, J., Tian, Z., Zhu, J., & Yue, L. (2020). Implementation of a price-driven demand response in a distributed energy system with multi-energy flexibility measures. Energy Conversion and Management, 208(February), 112575.

    Article  Google Scholar 

  55. Noussan, M. (2018). Performance based approach for electricity generation in smart grids. Applied Energy, 220(December 2017), 231–241.

    Article  Google Scholar 

  56. Oshnoei, A., Khezri, R., & Muyeen, S. M. (2019). Model predictive-based secondary frequency control considering heat pump water heaters. Energies, 12(3).

    Google Scholar 

  57. Pan, Z. J., & Zhang, Y. (2016). A novel centralized charging station planning strategy considering urban power network structure strength. Electric Power Systems Research, 136, 100–109.

    Article  Google Scholar 

  58. Pandžić, H. (2018). Optimal battery energy storage investment in buildings. Energy and Buildings, 175, 189–198.

    Article  Google Scholar 

  59. Petkov, I., & Gabrielli, P. (2020). Power-to-hydrogen as seasonal energy storage: An uncertainty analysis for optimal design of low-carbon multi-energy systems. Applied Energy, 274(April), 115197.

    Article  Google Scholar 

  60. Pouttu, A., et al. (2017). P2P model for distributed energy trading, grid control and ICT for local smart grids. In EuCNC 2017 - European conference on networks and communications.

    Google Scholar 

  61. Qiu, J., Zhao, J., Yang, H., Wang, D., & Dong, Z. Y. (2018). Planning of solar photovoltaics, battery energy storage system and gas micro turbine for coupled micro energy grids. Applied Energy, 219, 361–369.

    Article  Google Scholar 

  62. Ramsebner, J., Haas, R., Ajanovic, A., & Wietschel, M. (2021). The sector coupling concept: A critical review. Wiley Interdisciplinary Reviews: Energy and Environment, (January), 1–27.

    Google Scholar 

  63. Robinius, M., et al. (2018). Power-to-gas: Electrolyzers as an alternative to network expansion – An example from a distribution system operator. Applied Energy, 210, 182–197.

    Article  Google Scholar 

  64. Ruhnau, O., Bannik, S., Otten, S., Praktiknjo, A., & Robinius, M. (2019). Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050. Energy, 166, 989–999.

    Article  Google Scholar 

  65. Sadeghian, O., Mohammadpour Shotorbani, A., & Mohammadi-Ivatloo, B. (2019). Risk-based stochastic short-term maintenance scheduling of GenCos in an oligopolistic electricity market considering the long-term plan. Electric Power Systems Research, 175, 105908.

    Article  Google Scholar 

  66. Sadeghian, O., Moradzadeh, A., Mohammadi-Ivatloo, B., Abapour, M., & Marquez, F. P. G. (2020). Generation units maintenance in combined heat and power integrated systems using the mixed integer quadratic programming approach. Energies, 13(11), 2840.

    Article  Google Scholar 

  67. Sadeghian, O., Oshnoei, A., Kheradmandi, M., Khezri, R., & Mohammadi-Ivatloo, B. (2020). A robust data clustering method for probabilistic load flow in wind integrated radial distribution networks. International Journal of Electrical Power & Energy Systems, 115, 105392.

    Article  Google Scholar 

  68. Sadeghian, O., Oshnoei, A., Khezri, R., & Muyeen, S. M. (2020). Risk-constrained stochastic optimal allocation of energy storage system in virtual power plants. Journal of Energy Storage, 31, 101732.

    Article  Google Scholar 

  69. Sadeghian, O., et al. (2021). A comprehensive review on energy saving options and saving potential in low voltage electricity distribution networks: Building and public lighting. Sustainable Cities and Society, 72, 103064.

    Article  Google Scholar 

  70. Serpi, A., Porru, M., & Damiano, A. (2017). An optimal power and energy management by hybrid energy storage systems in microgrids. Energies, 10(11).

    Google Scholar 

  71. Shariatkhah, M. H., Haghifam, M. R., Chicco, G., & Parsa-Moghaddam, M. (2016). Adequacy modeling and evaluation of multi-carrier energy systems to supply energy services from different infrastructures. Energy, 109, 1095–1106.

    Article  Google Scholar 

  72. Sinha, R., Bak-Jensen, B., Pillai, J. R., & Zareipour, H. (2019). Flexibility from electric boiler and thermal storage for multi energy system interaction. Energies, 13(1), 1–21.

    Article  Google Scholar 

  73. Sinsel, S. R., Riemke, R. L., & Hoffmann, V. H. (2020). Challenges and solution technologies for the integration of variable renewable energy sources—A review. Renewable Energy, 145, 2271–2285.

    Article  Google Scholar 

  74. Strbac, G. (2008). Demand side management: Benefits and challenges. Energy Policy, 36(12), 4419–4426.

    Article  Google Scholar 

  75. Syrodoy, S. V., Kostoreva, J. A., Kostoreva, A. A., & Asadullina, L. I. (2020). Ignition of wood and coal particle mixtures in conditions of steam and water boiler furnaces. Journal of the Energy Institute, 93(2), 443–449.

    Article  Google Scholar 

  76. Tabar, V. S., & Abbasi, V. (2019). Energy management in microgrid with considering high penetration of renewable resources and surplus power generation problem. Energy, 189.

    Google Scholar 

  77. Thygesen, R., & Karlsson, B. (2013). Economic and energy analysis of three solar assisted heat pump systems in near zero energy buildings. Energy and Buildings, 66, 77–87.

    Article  Google Scholar 

  78. Vahidinasab, V., Ardalan, C., Mohammadi-Ivatloo, B., Giaouris, D., & Walker, S. L. (2021). Active building as an energy system: Concept, challenges, and outlook. IEEE Access, 9, 58009–58024.

    Article  Google Scholar 

  79. Van Beuzekom, I., Gibescu, M., & Slootweg, J. G. (2015). A review of multi-energy system planning and optimization tools for sustainable urban development. In 2015 IEEE Eindhoven PowerTech, PowerTech 2015 (pp. 1–7).

    Google Scholar 

  80. Vivian, J., Prataviera, E., Cunsolo, F., & Pau, M. (2020). Demand side management of a pool of air source heat pumps for space heating and domestic hot water production in a residential district. Energy Conversion and Management, 225, 113457.

    Article  Google Scholar 

  81. Vrba, P., et al. (2014). A review of agent and service-oriented concepts applied to intelligent energy systems. IEEE Transactions on Industrial Informatics, 10(3), 1890–1903.

    Article  Google Scholar 

  82. Wang, A., Liu, J., & Wang, W. (2018). Flexibility-based improved model of multi-energy hubs using linear weighted sum algorithm. Journal of Renewable and Sustainable Energy, 10(1).

    Google Scholar 

  83. Wei, C., Xu, X., Zhang, Y., Li, X., & Bai, X. (2019). A survey on optimal control and operation of integrated energy systems. Complexity, 2019.

    Google Scholar 

  84. Wikstrom, R. (2017). Innovative energy management to utilize energy efficient solutions in the ICT infrastructure. In INTELEC, international telecommunications energy conference (proceedings) (Vol. 2017, pp. 570–573).

    Google Scholar 

  85. Yang, T. (2018). ICT technologies standards and protocols for active distribution network. In Smart power distribution systems: Control, communication, and optimization (pp. 205–230). Elsevier.

    Google Scholar 

  86. Yang, J., Dong, Z. Y., Wen, F., Chen, G., & Qiao, Y. (2020). A decentralized distribution market mechanism considering renewable generation units with zero marginal costs. IEEE Transactions on Smart Grid, 11(2), 1724–1736.

    Article  Google Scholar 

  87. Zailan, R., Lim, J. S., Manan, Z. A., Alwi, S. R. W., Mohammadi-ivatloo, B., & Jamaluddin, K. (2021). Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review. Renewable and Sustainable Energy Reviews, 148, 111289.

    Article  Google Scholar 

  88. Zare Oskouei, M., Mirzaei, M. A., Mohammadi-Ivatloo, B., Shafiee, M., Marzband, M., & Anvari-Moghaddam, A. (2021). A hybrid robust-stochastic approach to evaluate the profit of a multi-energy retailer in tri-layer energy markets. Energy, 214.

    Google Scholar 

  89. Zatti, M., Gabba, M., Rossi, M., Morini, M., Gambarotta, A., & Martelli, E. (2018). Towards the optimal design and operation of multi-energy systems: The ‘efficity’ project. Environmental Engineering and Management Journal, 17(10), 2409–2419.

    Article  Google Scholar 

  90. Zhu, F., Fu, J., Zhao, P., & Xie, D. (2020). Robust energy hub optimization with cross-vector demand response. International Transactions on Electrical Energy Systems, 30(10), 1–14.

    Article  Google Scholar 

Download references

Acknowledgements

This publication was partially supported by award NPRP12S-0125-190013 from the QNRF-Qatar National Research Fund, a member of The Qatar Foundation. The information and views set out in this publication are those of the authors and do not necessarily reflect the official opinion of the QNRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Sadeghian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadeghian, O., Oshnoei, A., Mohammadi-Ivatloo, B., Vahidinasab, V. (2022). Concept, Definition, Enabling Technologies, and Challenges of Energy Integration in Whole Energy Systems To Create Integrated Energy Systems. In: Vahidinasab, V., Mohammadi-Ivatloo, B. (eds) Whole Energy Systems . Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-87653-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87653-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87652-4

  • Online ISBN: 978-3-030-87653-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics