Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 236))

  • 538 Accesses

Abstract

Traffic demands on the Internet are becoming increasingly dynamic and are driving the need for greater routing flexibility in the underlying optical network. Space-division multiplexing (SDM) is mainly seen as a means to increase data throughput and handle exponential traffic growth. But, its role is certainly more diverse. Research on SDM encourages device integration, brings new functionality to network elements and helps optical networks to evolve. As a result, the number of individual components in the future networks will decrease, which in turn will improve overall reliability as well as lower operational expenditure and power consumption. From an application point of view, the prevalence of various band-consuming applications such as video streaming, cloud computing, big data, Internet of Things (IoT), social networking service (SNS) will produce a strong traffic demand especially on short-reach fiber transmission links. Among them, inter- and intra-data center (DC) traffics are expected to grow very rapidly in the coming years, and the development of ultra-high-capacity data interconnection and network technologies is urgently needed. Such short-reach links are promising candidates of the first-stage introduction of SDM technologies not only because of the highest traffic demands but also due to relaxed fiber specifications that come hand in hand with the shorter transmission distance. The first part of this chapter introduces basic technologies devised for network nodes and reviews recent research which has extended the SDM concept to optical switching as well as has utilized SDM-specific features to facilitate network control. The second part then focuses on short-reach systems and discusses an application example of SDM for data center signal protection.

Werner Klaus is a chapter editor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Ryf, S. Randel, A.H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E.C. Burrows, R.-J. Essiambre, P.J. Winzer, D.W. Peckham, A.H. McCurdy, R. Lingle Jr., Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing. J. Lightwave Technol. 30(4), 521–531 (2012)

    Article  ADS  Google Scholar 

  2. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, T. Morioka, 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency, in 38th European Conference and Exhibition on Optical Communication (ECOC), paper Th.3.C.1 (2012)

    Google Scholar 

  3. T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, T. Morioka, 12-core × 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization, in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), paper Th5B.2 (2014)

    Google Scholar 

  4. P.J. Winzer, Making spatial multiplexing a reality: the future of high-capacity optical networks. Nat. Photon. 8(5), 345–348 (2014)

    Article  ADS  Google Scholar 

  5. S.L. Woodward, M.D. Feuer, P. Palarchala, ROADM-node architectures for reconfigurable photonic networks, in Optical Fiber Telecommunications VIB, eds. I.P. Kaminow, T. Li, A. Willner (Academic Press, 2013)

    Google Scholar 

  6. D.M. Marom, D.T. Neilson, D.S. Greywall, C.-S. Pai, N.R. Basavanhally, V.A. Aksyuk, D.O. López, F. Pardo, M.E. Simon, Y. Low, P. Kolodner, C.A. Bolle, Wavelength-selective 1 × K switches using free-space optics and MEMS micromirrors: theory, design, and implementation. J. Lightwave Technol. 23(4), 1620–1630 (2005)

    Article  ADS  Google Scholar 

  7. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, S. Poole, Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements, in Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), paper OTuF2 (2006)

    Google Scholar 

  8. International Telecommunication Union, Spectral Grids for WDM Applications: DWDM Frequency Grid. ITU-T Rec. G.694.1 (2012)

    Google Scholar 

  9. M.D. Feuer, L.E. Nelson, K. Abedin, X. Zhou, T.F. Taunay, J.F. Fini, B. Zhu, R. Isaac, R. Harel, G. Cohen, D.M. Marom, ROADM system for space division multiplexing with spatial superchannels, in Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), paper PDP5B.8 (2013)

    Google Scholar 

  10. L.E. Nelson, M.D. Feuer, K. Abedin, X. Zhou, T.F. Taunay, J.M. Fini, B. Zhu, R. Isaac, R. Harel, G. Cohen, D.M. Marom, Spatial superchannel routing in a two-span ROADM system for space division multiplexing. J. Lightwave Technol. 32(4), 783–789 (2014)

    Article  ADS  Google Scholar 

  11. R. Ryf, N.K. Fontaine, J. Dunayevsky, D. Sinefeld, M. Blau, M. Montoliu, S. Randel, C. Liu, B. Ercan, M. Esmaeelpour, S. Chandrasekhar, A.H. Gnauck, S.G. Leon-Saval, J. Bland-Hawthorn, J.R. Salazar-Gil, Y. Sun, L. Gruner-Nielsen, R. Lingle, D.M. Marom, Wavelength-selective switch for few-mode fiber transmission, in European Conference and Exposition on Optical Communications (ECOC), paper PD1C4 (2013)

    Google Scholar 

  12. D. Noordegraaf, P.M.W. Skovgaard, M.D. Nielsen, J. Bland-Hawthorn, Efficient multi-mode to singlemode coupling in a photonic lantern. Opt. Express 17(3), 1988–1994 (2009)

    Article  ADS  Google Scholar 

  13. S.G. Leon-Saval, A. Argyros, J. Bland-Hawthorn, Photonic lanterns: a study of light propagation in multimode to single-mode converters. Opt. Express 18(8), 8430–8439 (2010)

    Article  ADS  Google Scholar 

  14. J. Carpenter, S.G. Leon-Saval, J.R. Salazar-Gil, J. Bland-Hawthorn, G. Baxter, L. Stewart, S. Frisken, M.A.F. Roelens, B.J. Eggleton, J. Schröder, 1 × 11 few-mode fiber wavelength selective switch using photonic lanterns. Opt. Express 22(3), 2216–2221 (2014)

    Article  ADS  Google Scholar 

  15. N.K. Fontaine, T. Haramaty, R. Ryf, H. Chen, L. Miron, L. Pascar, M. Blau, B. Frenkel, L. Wang, Y. Messaddeq, S. LaRochelle, R.J. Essiambre, Y. Jung, Q. Kang, J.K. Sahu, S.U. Alam, D.J. Richardson, D.M. Marom, Heterogeneous space-division multiplexing and joint wavelength switching demonstration, in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), paper Th5C.5 (2015)

    Google Scholar 

  16. N.K. Fontaine, R. Ryf, D.T. Neilson, Wavelength selective crossconnects, in Opto Electronics and Communications Conference (OECC), 2013, paper ThT1.4 (2015)

    Google Scholar 

  17. Open Networking Foundation, Software-Defined Networking: The New Norm for Networks. ONF White Paper (2012)

    Google Scholar 

  18. X. Cao, V. Anand, C. Qiao, Multi-layer versus single-layer optical cross-connect architectures for waveband switching. IEEE INFOCOM 2004, 1830–1840 (2004)

    Google Scholar 

  19. N. Amaya, G.S. Zervas, D. Simeonidou, Architecture on demand for transparent optical networks, in International Conference of Transparent Networks (ICTON), paper Th.A1.5 (2011)

    Google Scholar 

  20. M. Garrich, N. Amaya, G.S. Zervas, P. Giaccone, D. Simeonidou, Power consumption analysis of architecture on demand, in European Conference and Exhibition on Optical Communication (ECOC), paper P5.06 (2012)

    Google Scholar 

  21. N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B.J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, I. Henning, Fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes. Opt. Express 21(7), 8865–8872 (2013)

    Article  ADS  Google Scholar 

  22. N. Amaya, S. Yan, M. Channegowda, B.R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, E. Hugues-Salas, G. Zervas, R. Nejabati, D. Simeonidou, B.J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, H. Harai, N. Wada, Software defined networking (SDN) over space division multiplexing (SDM) optical networks: features, benefits and experimental demonstration. Opt. Express 22(3), 3638–3647 (2014)

    Article  ADS  Google Scholar 

  23. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Schenker, J. Turner, OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comp. Comm. Rev. 38(2), 69–74 (2008)

    Article  Google Scholar 

  24. S. Fujii, Y. Hirota, T. Watanabe, H. Tode, Dynamic spectrum and core allocation with spectrum region reducing costs of building modules in AoD nodes. Telecommun. Netw. Strategy Plann. Symp. (Netw.) 2014, 1–6 (2014)

    Google Scholar 

  25. S. Fujii, Y. Hirota, H. Tode, K. Murakami, On-Demand spectrum and core allocation for reducing crosstalk in multicore fibers in elastic optical networks. J. Opt. Commun. Netw. 6(12), 1059–1071 (2014)

    Article  Google Scholar 

  26. E. Ciaramella, Wavelength conversion and all-optical regeneration: achievements and open issues. J. Lightwave Technol. 30(4), 572–582 (2012)

    Article  ADS  Google Scholar 

  27. R.S. Luís, B.J. Puttnam, J.-M.D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, Comparing inter-core skew fluctuations in multi-core and single-core fibers, in Conference on Lasers and Electro-Optics (CLEO), paper SM2L.5 (2015)

    Google Scholar 

  28. M.D. Feuer, L.E. Nelson, X. Zhou, S.L. Woodward, R. Isaac, B. Zhu, T.F. Taunay, M. Fishteyn, J.M. Fini, M.F. Yan, Joint digital signal processing receivers for spatial superchannels. Phot. Techn. Lett. 24(21), 1957–1960 (2012)

    Google Scholar 

  29. T. Ito, E.L.T. de Gabory, M. Arikawa, Y. Hashimoto, K. Fukuchi, Reduction of Influence of inter-core cross-talk in MCF with bidirectional assignment between neighboring cores, in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), paper OTh3K.2 (2013)

    Google Scholar 

  30. F. Ye, T. Morioka, Interleaved core assignment for bidirectional transmission in multi-core fibers, in European Conference and Exhibition on Optical Communication (ECOC), paper We.2.D.5 (2013)

    Google Scholar 

  31. S.K. Korotky, Semi-empirical description and projections of internet traffic trends using a hyperbolic compound annual growth rate. Bell Labs Techn. J. 18(3), 5–21 (2013)

    Article  Google Scholar 

  32. Network Disaster Recovery. IEEE Commun. Mag. 49(1) (2011)

    Google Scholar 

  33. S. Secci, S. Murugesan, Cloud networks: enhancing performance and resiliency. IEEE Comput. 82–85 (2014)

    Google Scholar 

  34. R.E. Krock, Lack of emergency recovery planning is a disaster waiting to happen. IEEE Commun. Mag. 48–51 (2011)

    Google Scholar 

  35. K.T. Morrison, Rapidly recovering from the catastrophic loss of a major telecommunications office. IEEE Commun. Mag. 28–35 (2011)

    Google Scholar 

  36. J. Sakaguchi, B.J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, M. Watanabe, 305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber. IEEE J. Lightwave Technol. 31(4), 554–562 (2013)

    Google Scholar 

  37. H. Takara, H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, T. Morioka, 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency, in Proceedings of European Conference of Optical Communication (ECOC), PDP Th.3.C.1, Amsterdam (2012)

    Google Scholar 

  38. B. Zhu, T.F. Taunay, M.F. Yan, J.M. Fini, M. Fishteyn, E.M. Monberg, F.V. Dimarcello, Seven-core multicore fiber transmissions for passive optical network. Opt. Express 18(11), 11117–11122 (2010)

    Article  ADS  Google Scholar 

  39. K. Hiruma, T. Sugawara, K. Tanaka, E. Nomoto, Y. Lee, Proposal of high-capacity and high-reliability optical switch equipment with multi-core fibers, in Proceedings of the 18th Opto Electronics and Communications Conference (OECC), paper ThT1-2, Kyoto, July (2013)

    Google Scholar 

  40. Y. Lee, K. Tanaka, K. Hiruma, E. Nomoto, T. Sugawara, H. Arimoto, Experimental demonstration of a highly reliable multicore-fiber-based optical network. IEEE Photon Technol. Lett. 26(6), 538–540 (2014)

    Article  ADS  Google Scholar 

  41. Y. Lee, K. Tanaka, K. Hiruma, E. Nomoto, T. Sugawara, H. Arimoto, Multi-core fiber technology for optical-access and short-range links, in Proceedings of the 12th International Conference on Optical Internet (COIN), TB2-4 (2014)

    Google Scholar 

  42. C.J.S. DeCusatis, A. Carranza, C.M. DeCusatis, Communication within clouds: open standards and proprietary protocols for data center networking. IEEE Commun. Mag. 26–33 (2012)

    Google Scholar 

  43. T. Mitsui, T. Sakamoto, K. Hara, N. Yoshimoto, “lexible and scalable PON protection architecture using N:M redundancy toward next generation access network, in Proceedings of The 17th Asia-Pacific Conference on Communications (APCC), pp. 224–229, October (2011)

    Google Scholar 

  44. T. Costello, Business Continuity: Beyond Disaster Recovery, pp. 62–64, IT Pro September/October (2012)

    Google Scholar 

  45. S. Senda, K. Nguyen, S. Yamada, Requirements for resilient information and communication technology, in Proceedings of 2013 Seventh International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), Taichung, Taiwan, pp. 418–423 (2013)

    Google Scholar 

  46. C. DeCusatis, Optical interconnect networks for data communications. IEEE J. Lightwave Technol. 32(4), 544–552 (2014)

    Google Scholar 

  47. S. Azodolmolky, P. Wieder, R. Yahyapour, Cloud computing networking: challenges and opportunities for innovations. IEEE Commun. Mag. 54–62 (2013)

    Google Scholar 

  48. A. Vahdat, The impact of mega-scale data centers on internet architecture, in Proceedings of Optical Fiber Communication Conference (OFC), MD3.1, San Diego, CA, pp. 131–132 (2009)

    Google Scholar 

  49. A. Vahdat, M. Al-Fares, N. Farrington, R.N. Mysore, G. Porter, S. Radhakrishnan, Scale-out networking in the data center. IEEE Micro, 29–41 (2010)

    Google Scholar 

  50. B. Welch, G. Nicholl, K. Conroy, J. Maki, D. Lewis, 400G-PSM4: A proposal for the 500 m objective using 100 Gb/s per lane signaling, in Contribution to IEEE 802.3bs 400 Gb/s Ethernet Task Force, Interim Meeting, Pittsburgh, PA, USA, May (2015)

    Google Scholar 

  51. R. Hirai, H. Toyoda, N. Kikuchi, Feasibility study of 100 G/lambda Nyquist-PAM4 with commercially available 1.3 μm/1.5 μm EML, in Contribution to IEEE 802.3bs 400 Gb/s Ethernet Task Force, Plenary Meeting, Ottawa, Ontario, CANADA, September (2014)

    Google Scholar 

  52. IEEE P802.3bs MMF Ad Hoc, 400 Gb/s 100 m MMF reach objective draft baseline proposal, in Contribution to IEEE 802.3bs 400 Gb/s Ethernet Task Force, Plenary Meeting, San Antonio, TX, USA, November (2014)

    Google Scholar 

  53. H. Liu, C. F. Lam, C. Johnson, Scaling optical interconnects in datacenter networks opportunities and challenges for WDM, in Proceedings of 18th IEEE Symposium on High Performance Interconnects, pp. 113–116 (2010)

    Google Scholar 

  54. B. Zhu, T.F. Taunay, M.F. Yan, M. Fishteyn, G. Oulundsen, D. Vaidya, 70-Gb/s multicore multimode fiber transmissions for optical data links. IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010)

    Google Scholar 

  55. B.G. Lee, D.M. Kuchta, F.E. Doany, C.L. Schow, P. Pepeljugoski, C. Baks, T.F. Taunay, B. Zhu, M.F. Yan, G.E. Oulundsen, D.S. Vaidya, W. Luo, N. Li, End-to-end multicore multimode fiber optic link operating up to 120 Gb/s. IEEE J. Lightwave Technol. 30(6), 886–892 (2012)

    Article  ADS  Google Scholar 

  56. Y. Sun, R. Shubochkin, B. Zhu, Space division multiplexing in access networks, in Proceedings of SPIE, 9387, San Francisco, USA (2015)

    Google Scholar 

  57. Y. Geng, S. Li, M.-J. Li, C.G. Sutton, R.L. McCollum, R.L. McClure, A.V. Koklyushkin, K.I. Matthews, J.P. Luther, D.L. Butler, High-speed, bi-directional dual-core fiber transmission system for high-density, short-reach optical interconnects, in Proceedings of SPIE, 9390, San Francisco, USA (2015)

    Google Scholar 

  58. B. Rosinski, J.D. Chi, P. Grosso, J.L. Bihan, Multichannel transmission of a multicore fiber coupled with VCSEL. IEEE J. Lightwave Technol. 17(5), 807–810 (1999)

    Article  ADS  Google Scholar 

  59. M-J Li, B. Hoover, V.N. Nazarov, D.L. Butle, Multicore fiber for optical interconnect applications, in Proceedings 17th Opto-Electronics and Communications Conference, paper 5E4-2 (OECC 2012), Busan, Korea, July 2012

    Google Scholar 

  60. T. Hayashi, T. Nakanishi, K. Hirashima, O. Shimakawa, F. Sato, K. Koyama, A. Furuya, Y. Murakami, T. Sasaki, 125-μm-cladding 8-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects, in Proceedings of Optical Fiber Communication Conference (OFC), Los Angeles, CA, March, 2015, post-deadline paper Th5C.6 (2015)

    Google Scholar 

  61. T. Kuri, H. Harai, N. Wada, T. Kawanishi, M. Hosokawa, Adaptable access system: pursuit of ideal future access system architecture. IEEE Netw. Mag. 26(2), 42–48 (2012)

    Google Scholar 

  62. F.J. Effenberger, Space division multiplexing in access networks, in Proceedings of SPIE, 9387, San Francisco, USA (2015)

    Google Scholar 

  63. B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, P. Shum, Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats. Opt. Express 23(9), 10977–11006 (2015)

    Google Scholar 

  64. T. Hu, J. Li, P. Zhu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, Z. Chen, Experimental demonstration of passive optical network based on mode-division-multiplexing, in Proceedings of Optical Fiber Communication Conference (OFC), paper Th2A.63, Los Angeles, CA, March, 2015

    Google Scholar 

  65. K. Nakanishi, S. Yoshida, S. Aoyagi, A low loss multiplexing scheme for PDS system, in IEICE General Conference, B-10-112, p. 621 (1997) (in Japanese)

    Google Scholar 

  66. N. Cheng, Z. Liao, F.J. Effenberger, Large splitting and long reach passive optical networks with mode coupling receivers, in Proceedings of 36th European Conference on Optical Communication (ECOC 2010), paper Tu.5.B.3, Torino, Italy, September, 2010 (2015)

    Google Scholar 

  67. M. Fujiwara, K. Suzuki, N. Yoshimoto, M. Oguma, S. Soma, Increasing splitting ratio of 10 Gb/s-class PONs by using FW-DMF, in Optical Fiber Communication Conference (OFC), paper Tu.2.C.5, San Francisco, CA, March, 2014 (2014)

    Google Scholar 

  68. C. Xia, N. Chand, A.M. Velázquez-Benítez, Z. Yang, X. Liu, J.E. Antonio-Lopez, H. Wen, B. Zhu, N. Zhao, F.J. Effenberger, R. Amezcua-Correa, G. Li, Time-division-multiplexed few-mode passive optical network. Opt. Express 23(2), 1151–1158 (2015)

    Article  ADS  Google Scholar 

  69. Y. Fang, J. Yu, N. Chi, J. Zhang, J. Xiao, A novel PON architecture based on OAM multiplexing for efficient bandwidth utilization. IEEE Photon. J. 7(1), 1–6 (2015)

    Google Scholar 

  70. C. Raffaelli, R. Veisllari, Scheduling and performance of hybrid traffic in a data center optical core switch, in Proceedings of 16th International Conference on Transparent Optical Networks (ICTON), paper B1.1, Graz, Austria, July, 2014

    Google Scholar 

  71. S. Zhong, Z. Zhu, Optical virtual switching (OvS): a distributed optical switching fabric for intra-data center networking, in Proceedings of 23rd Wireless and Optical Communication Conference (WOCC), paper O2.3, Newark, NJ, U.S.A., May 2014

    Google Scholar 

  72. M. Fiorani, M. Casoni, S. Aleksic, Large data center interconnects employing hybrid optical switching, in Proceedings of 18th European Conference on Network and Optical Communications (NOC) and 8th Conference on Optical Cabling and Infrastructure (OC&i), July, 2013, pp. 61–68

    Google Scholar 

  73. S. Yan, E. Hugues-Salas, V.J.F. Rancaño, Y. Shu, G.M. Saridis, B.R. Rofoee, Y. Yan, A. Peters, S. Jain, T. May-Smith, P. Petropoulos, D.J. Richardson, G. Zervas, D. Simeonidou, Archon: a function programmable optical interconnect architecture for transparent intra and inter data center SDM/TDM/WDM networking. IEEE J. Lightwave Technol. 33(8), 1586–1595 (2015)

    Article  ADS  Google Scholar 

  74. V.J.F. Rancaño, S. Jain, T.C. May-Smith, E. Hugues-Salas, S. Yan, G. Zervas, D. Simeonidou, P. Petropoulos, D.J. Richardson, Demonstration of space-to-wavelength conversion in SDM networks. IEEE Photon. Technol. Lett. 27(8), 828–83 (12015)

    Google Scholar 

  75. Y. Tottori, T. Kobayashi, M. Watanabe, Low Loss optical connection module for seven-core multicore fiber and seven single-mode fibers. IEEE Photon. Technol. Lett. 24(21), 1926–1928 (2012)

    Article  ADS  Google Scholar 

  76. E. Sugita, R. Nagase, K. Kanayama, T. Shintaku, SC-type single-mode optical fiber connectors. IEEE J. Lightwave Technol. 7, 1689–1696 (1989)

    Article  ADS  Google Scholar 

  77. K. Shikama, Y. Abe, S. Yanagi, T. Takahashi, Physical-contact conditions for multicore fiber optional connectors, in Proceedings of Optical Fiber Communication Conference (OFC), paper OM3I.1, Anaheim, CA, March (2013)

    Google Scholar 

  78. D. Marcuse, Loss analysis of single-mode fiber splices. Bell Syst. Techn. J. 56, 703–718 (1977)

    Article  ADS  Google Scholar 

  79. International Standard, IEC 60874-14-5 First edition 1997–06. Connectors for optical fibres and cables. Part 14-5: Detail specification for fibre optical connector type SC-PC untuned terminated to single-mode fibre type B1.

    Google Scholar 

  80. E. Nomoto, K. Hiruma, T. Sugawara, K. Tanaka, and “connectors for optical fibres and cables”, SC-type multi-core optical-fiber connectors using a pressurization spring. Opt. Rev. (2015). https://doi.org/10.1007/s10043-015-0.127-0

    Article  Google Scholar 

  81. N. Farrington, A. Andreyev, Facebook’s Data Center Network Architecture, in Proceedings of IEEE Optical Interconnects Conference, Santa Fe, New Mexico, May (2013)

    Google Scholar 

  82. B. Zhu, T.F. Taunay, M.F. Yan, M. Fishteyn, G. Oulundsen, D. Vaidya, 70-Gb/s multicore multimode fiber transmissions for optical data links. IEEE J. Lightwave Technol. 22(22), 1647–1649 (2010)

    Google Scholar 

  83. K. Tanaka, Y. Lee, E. Nomoto, T. Sugawara, H. Arimoto, Experimental evaluation of recovery from multiple failures in multi-core fiber links using FPGA-based optical switch units. IEEE J. Lightwave Technol. 33(1), 201–211 (2015)

    Article  ADS  Google Scholar 

  84. J. Sakaguchi, Y. Awaji, N. Wada, Fundamental study on new characterization method for crosstalk property of multi-core fibers using long wavelength probe signals, in Proceedings of Optical Fiber Communication Conference (OFC), OW1K.1, Anaheim, CA, March (2013)

    Google Scholar 

  85. T. Hayashi, T. Nakanishi, T. Sasaki, K. Saitoh, M. Koshiba, Dependence of crosstalk increase due to tight bend on core layout of multi-core fiber, in Proceedings of Optical Fiber Communication Conference (OFC), W4D.4, San Francisco, CA, March (2014)

    Google Scholar 

  86. Telecommunication Standardization Sector of International Telecommunication Union (ITU-T). Transmission System and Media. Digital System and Networks G.841

    Google Scholar 

Download references

Acknowledgements

We appreciate Dr. T. Kamiya and Prof. T. Morioka for their support in researching short-reach MCF applications. This work was also partly supported by “The research and development project for the ultra-high speed and green photonic networks” of the Ministry of Internal Affairs and Communications, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Klaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klaus, W., Sakaguchi, J., Puttnam, B.J., Kikuchi, N., Lee, Y., Tanaka, K. (2022). Network Technologies for SDM. In: Nakazawa, M., Suzuki, M., Awaji, Y., Morioka, T. (eds) Space-Division Multiplexing in Optical Communication Systems. Springer Series in Optical Sciences, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-030-87619-7_6

Download citation

Publish with us

Policies and ethics