Skip to main content

Abstract

In this introductory chapter, the physical limits and prospects of the present optical fiber communication systems as well as EXAT initiative and 3M technologies are briefly described. Then, the demands from future applications, namely ultra-realistic communications, and wireless communication networks, such as 5G technologies are described. Lastly, the state-of-the-art terrestrial optical transmission systems and optical submarine cable systems are summarized.

Toshio Morioka is a chapter editor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P.P. Mitra, J.B. Stark, Nonlinear limits to the information capacity of optical fibre communications. Nature 411 (6841), 1027–1030 (2001)

    Google Scholar 

  2. J.M. Kahn, K.-P. Ho, A bottleneck for optical fibres. Nature 411(6841), 1007–1009 (2001)

    Google Scholar 

  3. E.B. Desurvire, Capacity demand and technology challenges for lightwave systems in the next two decades. J. Lightwave Technol. 24(12), 4697–4710 (2006)

    Article  ADS  Google Scholar 

  4. T. Morioka, New generation optical infrastructure technologies: EXAT initiative: towards 2020 and beyond, in OECC 2009, FT4 (2009)

    Google Scholar 

  5. A.R. Chraplyvy, The coming capacity crunch, in ECOC 2009 (Plenary Session, 2009)

    Google Scholar 

  6. R.-J. Essiambre, G. Kramer, P.J. Winzer, G.J. Foschini, B. Goebel, Capacity limits of optical fiber networks. J. Lightwave Technol. 28(4), 662–701 (2010)

    Article  ADS  Google Scholar 

  7. M. Nakazawa et al., Special feature: basic R&D into fiber optic networks in Japan—NICT EXAT study group. New Breeze, the ITU association of Japan, Vol. 22(1), pp 3–15, January; No. 2, pp 1–10 (2010)

    Google Scholar 

  8. A.D. Ellis, J. Zhao, D. Cotter, Approaching the non-linear Shannon limit. J. Lightwave Technol. 28(4), 423–433 (2010)

    Article  ADS  Google Scholar 

  9. M. Nakazawa, Giant leaps in optical communication technologies towards 2030 and beyond, in European Conference on Optical Communication (ECOC 2010) (Plenary Talk, 2010)

    Google Scholar 

  10. P.J. Winzer, Energy-efficient optical transport capacity scaling through spatial multiplexing. IEEE Photon. Technol. Lett. 23(13), 851–853 (2011)

    Article  ADS  Google Scholar 

  11. M. Nakazawa, Extremely advanced transmission with 3M technologies (multi-level modulation, multi-core and multi-mode), in OFC/NFOEC 2012, OTu1D.1 (2012)

    Google Scholar 

  12. T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, F. Poletti, Enhancing optical communications with brand new fibers. IEEE Commun. Mag. 50(2), s31–s42 (2012)

    Article  Google Scholar 

  13. D.J. Richardson, J.M. Fini, L.E. Nelson, Space-division multiplexing in optical fibres. Nature Photonics 7(5), 354–362 (2013)

    Google Scholar 

  14. T. Morioka, Recent progress in space-division multiplexed transmission technologies, in (invited) OFC 2013, OW4F.2 (2013)

    Google Scholar 

  15. IEC Technical Report IEC 61292-4, Optical amplifiers-part 4: maximum permissible optical power for the damage-free and safe use of optical amplifiers, including Raman amplifiers (2004)

    Google Scholar 

  16. ITU-T Recommendation G.664, Optical safety procedures and requirements for optical transport systems (2006)

    Google Scholar 

  17. T. Morioka, Y. Awaji, Y. Matsushima, T. Kamiya, R&D of 3M technologies towards the realization of exabit/s optical communications. IEICE Trans. Commun. E100.B(9), 1707–1715 (2017)

    Google Scholar 

  18. M. Koshiba, K. Saitoh, Y. Kokubun, Heterogeneous multi-core fibers: proposal and design principle. IEICE Electron. Express 6(2), 98–103 (2009)

    Google Scholar 

  19. K. Imamura, K. Mukasa, R. Sugizaki, Y. Mimura, T. Yagi, Multi-core holey fibers for ultra large capacity wide-band transmission, in ECOC 2008, p. 1.17 (2008)

    Google Scholar 

  20. K. Imamura, K. Mukasa, Y. Mimura, T. Yagi, Multi-core holey fibers for the long-distance (> 100 km) ultra large capacity transmission, in OFC 2009, OTuC3 (2009)

    Google Scholar 

  21. Y. Kokubun, M. Koshiba, Novel multi-core fibers for mode division multiplexing: proposal and design principle. IEICE Electron. Express 6(8), 522–528 (2009)

    Google Scholar 

  22. S. Inao, T. Sato, S. Sentsui, T. Kuroha, Y. Nishimura, Multicore optical fiber, in OFC 1979, WB1 (1979)

    Google Scholar 

  23. N. Kashima, E. Maekawa, F. Nihei, New type of multicore fiber, in OFC 1982, ThAA5 (1982)

    Google Scholar 

  24. S. Berdagué, P. Facq, Mode division multiplexing in optical fibers. Appl. Opt. 21(11), 1950–1955 (1982)

    Google Scholar 

  25. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, T. Morioka, 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency, in ECOC 2012, Th.3.C.1 (2012)

    Google Scholar 

  26. T. Kobayashi, M. Nakamura, F. Hamaoka, K. Shibahara, T. Mizuno, A. sano, H. Kawakami, A. Isoda, M. Nagatani, H. Yamazaki, Y. Miyamoto, Y. Amma, Y. Sasaki, K. Takenaga, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, M. Nooruzzaman, T. Morioka, 1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band dense SDM transmission over 205.6-km of single-mode heterogeneous multi-core fiber using 96-Gbaud PDM-16QAM channels, in OFC 2017, Th5B.1 (2017)

    Google Scholar 

  27. K. Igarashi, T. Tsuritani, I. Morita, Y. Tsuchida, K. Maeda, M. Tadakuma, T. Saito, K. Watanabe, R. Sugizaki, M. Suzuki, 1.03-Exabit/s-km super-Nyquist-WDM transmission over 7,326-km seven-core fiber, in ECOC 2013, Paper PDP3.E.3 (2013)

    Google Scholar 

  28. T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, T. Morioka, 2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation, in European Conference and Exhibition on Optical Communication 2013, p. PD3.E.4 (2013)

    Google Scholar 

  29. D. Soma, K. Igarashi, Y. Wakayama, K. Takeshima, Y. Kawaguchi, N. Yoshikane, T. Tsuritani, I. Morita, M. Suzuki., 2.05 Peta-bit/s super-nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band, in ECOC 2015, PDP.3.2 (2015)

    Google Scholar 

  30. B.J. Puttnam, R.S. Luís, W. Klaus, J. Sakaguchi, J.M.D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, J.R. Marciante, 2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb, in ECOC 2015, PDP.3.1 (2015)

    Google Scholar 

  31. D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, M. Suzuki, 10.16 Peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C + L band, in ECOC 2017, Th.PDP.A.1 (2017)

    Google Scholar 

  32. D. Kong, E. Porto da Silva, Y. Sasaki, K. Aikawa, F. Da Ros, M. Galili, T. Morioka, L. Katsuo Oxenløwe, H. Hu, Kramers–Kronig detection with adaptive rates for 909.5 Tbit/s dense SDM and WDM data channels, in ECOC 2018, Th3F.5 (2018)

    Google Scholar 

  33. G. Rademacher, B.J. Puttnam, R.S. Luís, J. Sakaguchi, W. Klaus, T.A. Eriksson, Y. Awaji, T. Hayashi, T. Nagashima, T. Nakanishi, T. Taru, T. Takahata, T. Kobayashi, H. Furukawa, N. Wada, 10.66 Peta-Bit/s transmission over a 38-core-three-mode fiber, in Optical Fiber Communication Conference (OFC) 2020, OSA Technical Digest (Optical Society of America, 2020), paper Th3H.1 (2020)

    Google Scholar 

  34. R. Ryf, N.K. Fontaine, S. Wittek, K. Choutagunta, M. Mazur, H. Chen, J.C. Alvarado-Zacarias, R. Amezcua-Correa, M. Capuzzo, R. Kopf, A. Tate, H. Safar, C. Bolle, D.T Neilson, E. Burrows, K. Kim, M. Bigot-Astruc, F. Achten, P. Sillard, A. Amezcua-Correa, J.M Kahn, J. Schröder, J. Carpenter, High-spectral-efficiency mode-multiplexed transmission over graded-index multimode fiber, in 2018 European Conference on Optical Communication (ECOC), paper Th3B.1 (2018)

    Google Scholar 

  35. T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, T. Morioka, 12-core × 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization, in OFC 2014, Th5B.2 (2014)

    Google Scholar 

  36. UHDTV Standards: ITU-R Recommendation BT2020-1 (June 2014)

    Google Scholar 

  37. K. Masaoka, M. Emoto, M. Sugawara, Y. Nojiri, Contrast effects in evaluating the sense of presence of wide displays. SID 14(9), 785–791 (2006)

    Google Scholar 

  38. HEVC Standards: H.265 (ISO/IEC 23008-2 HEVC) (January 2013)

    Google Scholar 

  39. Y. Takaki, Development of super multi-view displays. ITE Trans. MTA 2(1), 8–14 (2014)

    Google Scholar 

  40. J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, M. Sato, Integral three-dimensional television using a 33-megapixel imaging system. J. Display Technol. 6(10), 422–430 (2010)

    Article  ADS  Google Scholar 

  41. T. Senoh, T. Mishina, K. Yamamoto, R. Oi, T. Kurita, Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination. J. Display Technol. 7(7), 382–390 (2011)

    Article  ADS  Google Scholar 

  42. S. Iwasawa et al., REI: an automultiscopic projection display, in Three Dimensional Systems and Applications (3DSA) (2013)

    Google Scholar 

  43. Common Public Radio Interface (CPRI); Interface specification, V.6.1 (2014)

    Google Scholar 

  44. R. Heron, Heterogeneous access fiber networks enabled by multi-wavelength PONs and virtualization, in ECOC 2013, Mo.3.F.1 (2013)

    Google Scholar 

  45. SmallCellForumDocument075.02.01, Synchronisation for LTE small cells (2013)

    Google Scholar 

  46. https://5g-ppp.eu

  47. http://www.imt-2020.cn/en/introduction

  48. http://5gmf.jp/en/

  49. DOCOMO 5G white paper, https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/whitepaper_5g/DOCOMO_5G_White_Paper.pdf

  50. Y. Okumura, 5G mobile radio access system using SHF/EHF bands, in 2014 Asia-Pacific Microwave Conference (2014)

    Google Scholar 

  51. 3GPP TR36.872, Small cell enhancements for E-UTRA and E-UTRAN—physical layer aspects (2013)

    Google Scholar 

  52. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, K. Higuchi, Non-orthogonal multiple access (NOMA) for future radio access, in IEEE VTC-Spring 2013 (2013)

    Google Scholar 

  53. S. Suyama, J. Shen, Y. Oda, H. Suzuki, K. Fukawa, 11 GHz band 8 × 16 MIMO-OFDM outdoor transmission experiment for 10 Gbps super high bit rate mobile communications, in IEEE PIMRC 2013 (2013)

    Google Scholar 

  54. T. Tashiro, S. Kuwano, J. Terada, T. Kawamura, N. Tanaka, S. Shigematsu, N. Yoshimoto, A novel DBA scheme for TDM-PON based mobile fronthaul, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Tu3F.3

    Google Scholar 

  55. http://www.fsan.org/news/

  56. ITU-T Recommendation G.989.1, 40-Gigabit-capable passive optical networks (NG-PON2): general requirements (2013)

    Google Scholar 

  57. B. Guo, W. Cao, A. Tao, D. Samardzija, LTE/LTE—a signal compression on the CPRI interface. Bell Labs Tech J. 18(2), 117–133 (2013)

    Google Scholar 

  58. ORI Contribution ORI (13) M17009, Compression method for open radio interface (2013)

    Google Scholar 

  59. T. Pfeiffer, F. Schaich, Optical architectures for mobileback and fronthauling, in Workshop of OFC2012 (2012)

    Google Scholar 

  60. T. Kubo, T. Asai, Y. Okumura, A study on optical bandwidth reduction for future radio access and optical network, in IEICE Tech. Report, CS2013-51 (2013) (In Japanese)

    Google Scholar 

  61. K. Miyamoto, S. Kuwano, J. Terada, A. Otaka, Uplink joint reception with LLR forwarding for optical transmission bandwidth reduction in mobile fronthaul, in Proceedings VTC2015-Spring, pp. 1–5 (2015)

    Google Scholar 

  62. https://www.soumu.go.jp/main_sosiki/joho_tsusin/eng/pressrelease/2020/7/31_3.html

  63. IEEE Std 802.3ah-2004, Media access control parameters, physical layers, and management parameters for subscriber access networks (2004)

    Google Scholar 

  64. IEEE Std 802.3av-2009, Physical layer specifications and management parameters for 10 Gb/s passive optical networks (2009)

    Google Scholar 

  65. ITU-T Recommdandation G.984 series, Gigabit-capable passive optical network (2004)

    Google Scholar 

  66. ITU-T Recommdandation G.987 series, 10 Gigabit-capable passive optical network (2010)

    Google Scholar 

  67. ITU-T Recommdandation G.989 series, 40 Gigabit-capable passive optical network (2015)

    Google Scholar 

  68. K. Hagimoto, NTT Tech. Rev. 3(6), 20–26 (2005)

    Google Scholar 

  69. S. Tsukamoto, D. Ly-Gagnon, K. Katoh, K. Kikuchi, Coherent demodulation of 40-Gbit/s polarization-multiplexed QPSK signals with 16-GHz spacing after 200-km transmission, in OFC/NFOEC 2005, paper PDP29 (2005)

    Google Scholar 

  70. E. Yamazaki, S. Yamanaka, Y. Kisaka, T. Nakagawa, K. Murata, E. Yoshida, T. Sakano, M. Tomizawa, Y. Miyamoto, S. Matsuoka, J. Matsui, A. Shibayama, J. Abe, Y. Nakamura, H. Noguchi, K. Fukuchi, H. Onaka, K. Fukumitsu, K. Komaki, O. Takeuchi, Y. Sakamoto, H. Nakashima, T. Mizuochi, K. Kubo, Y. Miyata, H. Nishimoto, S. Hirano, K. Onohara, Fast optical channel recovery in field demonstration of 100-Gbit/s Ethernet over OTN using real-time DSP. Opt. Express 19, 13179–13184 (2011)

    Article  ADS  Google Scholar 

  71. A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, H. Masuda, 102.3-Tb/s (224 × 548-Gb/s) C and extended L-band all-Raman transmission over 240 km using PDM-64 QAM single carrier FDM with digital pilot tone, in OFC/NFOEC 2012, PDP5C.3 (2012)

    Google Scholar 

  72. K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, T. Ono, 10.92-Tb/s (273 × 40-Gb/s) triple-band/ultra-dense WDM optical-repeatered transmission experiment, in OFC 2001, paper PD24 (2001)

    Google Scholar 

  73. Y. Frignac, G. Charlet, W. Idler, R. Dischler, P. Tran, S. Lanne, S. Borne, C. Martinelli, G. Veith, A. Jourdan, J. Hamaide, S. Bigo, Transmission of 256 wavelength-division and polarization- division-multiplexed channels at 42.7 Gb/s (10.2 Tb/s capacity) over 3×100 km of TeraLightTM fiber, in OFC 2002, paper FC5 (2002)

    Google Scholar 

  74. A.H. Gnauck, G. Charlet, P. Tran, P.J. Winzer, C.R. Doerr, J.C. Centanni, E.C. Burrows, T. Kawanishi, T. Sakamoto, K. Higuma, 25.6-Tb/s C+L-band transmission of polarization-multiplexed RZ-DQPSK signals, in OFC/NFOEC 2007, paper PDP19 (2007)

    Google Scholar 

  75. H. Masuda, A. Sano, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Hagimoto, T. Yamada, T. Furuta, H. Fukuyama, 20.4-Tb/s (204 × 111 Gb/s) Transmission over 240 km using bandwidth-maximized hybrid Raman/EDFAs, in OFC/NFOEC 2007, paper PDP20 (2007)

    Google Scholar 

  76. G. Charlet, J. Renaudier, H. Mardoyan, O.B. Pardo, F. Cerou, P. Tran, S. Bigo, 12.8 Tb/s transmission of 160 PDM-QPSK (160 × 2 × 40 Gbit/s) channels with coherent detection over 2550 km, in ECOC 2007, paper PD1.6 (2007)

    Google Scholar 

  77. H. Masuda, Review of wideband hybrid amplifiers, in OFC 2000, paper TuA1 (2000)

    Google Scholar 

  78. https://www.submarinecablemap.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Morioka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morioka, T. et al. (2022). Introduction. In: Nakazawa, M., Suzuki, M., Awaji, Y., Morioka, T. (eds) Space-Division Multiplexing in Optical Communication Systems. Springer Series in Optical Sciences, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-030-87619-7_1

Download citation

Publish with us

Policies and ethics