Skip to main content

A Few-Shot Learning Graph Multi-trajectory Evolution Network for Forecasting Multimodal Baby Connectivity Development from a Baseline Timepoint

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12928)

Abstract

Charting the baby connectome evolution trajectory during the first year after birth plays a vital role in understanding dynamic connectivity development of baby brains. Such analysis requires acquisition of longitudinal connectomic datasets. However, both neonatal and postnatal scans are rarely acquired due to various difficulties. A small body of works has focused on predicting baby brain evolution trajectory from a neonatal brain connectome derived from a single modality. Although promising, large training datasets are essential to boost model learning and to generalize to a multi-trajectory prediction from different modalities (i.e., functional and morphological connectomes). Here, we unprecedentedly explore the question: “Can we design a few-shot learning-based framework for predicting brain graph trajectories across different modalities?” To this aim, we propose a Graph Multi-Trajectory Evolution Network (GmTE-Net), which adopts a teacher-student paradigm where the teacher network learns on pure neonatal brain graphs and the student network learns on simulated brain graphs given a set of different timepoints. To the best of our knowledge, this is the first teacher-student architecture tailored for brain graph multi-trajectory growth prediction that is based on few-shot learning and generalized to graph neural networks (GNNs). To boost the performance of the student network, we introduce a local topology-aware distillation loss that forces the predicted graph topology of the student network to be consistent with the teacher network. Experimental results demonstrate substantial performance gains over benchmark methods. Hence, our GmTE-Net can be leveraged to predict atypical brain connectivity trajectory evolution across various modalities. Our code is available at https://github.com/basiralab/GmTE-Net.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang, H., Shen, D., Lin, W.: Resting-state functional MRI studies on infant brains: a decade of gap-filling efforts. Neuroimage 185, 664–684 (2019)

    Article  Google Scholar 

  2. Rekik, I., Li, G., Lin, W., Shen, D.: Predicting infant cortical surface development using a 4d varifold-based learning framework and local topography-based shape morphing. Med. Image Anal. 28, 1–12 (2016)

    Article  Google Scholar 

  3. Rekik, I., Li, G., Yap, P.T., Chen, G., Lin, W., Shen, D.: Joint prediction of longitudinal development of cortical surfaces and white matter fibers from neonatal mri. Neuroimage 152, 411–424 (2017)

    Article  Google Scholar 

  4. Bessadok, A., Mahjoub, M.A., Rekik, I.: Graph neural networks in network neuroscience. arXiv preprint arXiv:2106.03535 (2021)

  5. Fornito, A., Zalesky, A., Breakspear, M.: The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159–172 (2015)

    Article  Google Scholar 

  6. Ghribi, O., Li, G., Lin, W., Shen, D., Rekik, I.: Multi-regression based supervised sample selection for predicting baby connectome evolution trajectory from neonatal timepoint. Med. Image Anal. 68, 101853 (2021)

    Google Scholar 

  7. Goktas, A.S., Bessadok, A., Rekik, I.: Residual embedding similarity-based network selection for predicting brain network evolution trajectory from a single observation. arXiv preprint arXiv:2009.11110 (2020)

  8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  9. Ezzine, B.E., Rekik, I.: Learning-guided infinite network atlas selection for predicting longitudinal brain network evolution from a single observation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 796–805. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_88

    Chapter  Google Scholar 

  10. Nebli, A., Kaplan, U.A., Rekik, I.: Deep evographnet architecture for time-dependent brain graph data synthesis from a single timepoint. In: Rekik, I., Adeli, E., Park, S.H., Valdés Hernández, M.C. (eds.) PRIME 2020. LNCS, vol. 12329, pp. 144–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59354-4_14

    Chapter  Google Scholar 

  11. Tian, Y., Maicas, G., Pu, L.Z.C.T., Singh, R., Verjans, J.W., Carneiro, G.: Few-shot anomaly detection for polyp frames from colonoscopy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 274–284. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_27

    Chapter  Google Scholar 

  12. Li, A., Luo, T., Lu, Z., Xiang, T., Wang, L.: Large-scale few-shot learning: knowledge transfer with class hierarchy. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7212–7220 (2019)

    Google Scholar 

  13. Li, X., Yu, L., Jin, Y., Fu, C.-W., Xing, L., Heng, P.-A.: Difficulty-aware meta-learning for rare disease diagnosis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 357–366. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_35

    Chapter  Google Scholar 

  14. Yuan, P., et al.: Few is enough: task-augmented active meta-learning for brain cell classification. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 367–377. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_36

    Chapter  Google Scholar 

  15. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  16. Rajasegaran, J., Khan, S., Hayat, M., Khan, F.S., Shah, M.: Self-supervised knowledge distillation for few-shot learning. arXiv preprint arXiv:2006.09785 (2020)

  17. Hu, M., et al.: Knowledge distillation from multi-modal to mono-modal segmentation networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 772–781. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_75

    Chapter  Google Scholar 

  18. Zhou, Y., Chen, H., Lin, H., Heng, P.-A.: Deep semi-supervised knowledge distillation for overlapping cervical cell instance segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 521–531. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_51

    Chapter  Google Scholar 

  19. Bassett, D.S., Sporns, O.: Network neuroscience. Nat. Neurosci. 20, 353–364 (2017)

    Article  Google Scholar 

  20. Liu, J., et al.: Complex brain network analysis and its applications to brain disorders: a survey. Complexity 2017 (2017)

    Google Scholar 

  21. Joyce, K.E., Laurienti, P.J., Burdette, J.H., Hayasaka, S.: A new measure of centrality for brain networks. PloS one 5, e12200 (2010)

    Google Scholar 

  22. Fornito, A., Zalesky, A., Bullmore, E.: Fundamentals of Brain Network Analysis. Academic Press, Cambridge (2016)

    Google Scholar 

  23. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry, pp. 35–41 (1977)

    Google Scholar 

  24. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage 15, 273–289 (2002)

    Article  Google Scholar 

  25. Fischl, B., et al.: Sequence-independent segmentation of magnetic resonance images. Neuroimage 23, S69–S84 (2004)

    Article  Google Scholar 

  26. Pilanci, M., Vural, E.: Domain adaptation on graphs by learning aligned graph bases. IEEE Trans. Knowl. Data Eng. (2020). IEEE

    Google Scholar 

  27. Redko, I., Morvant, E., Habrard, A., Sebban, M., Bennani, Y.: A survey on domain adaptation theory. arXiv preprint arXiv:2004.11829 (2020)

Download references

Acknowledgements

This work was funded by generous grants from the European H2020 Marie Sklodowska-Curie action (grant no. 101003403, http://basira-lab.com/normnets/) to I.R. and the Scientific and Technological Research Council of Turkey to I.R. under the TUBITAK 2232 Fellowship for Outstanding Researchers (no. 118C288, http://basira-lab.com/reprime/). However, all scientific contributions made in this project are owned and approved solely by the authors. A.B is supported by the same TUBITAK 2232 Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islem Rekik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bessadok, A. et al. (2021). A Few-Shot Learning Graph Multi-trajectory Evolution Network for Forecasting Multimodal Baby Connectivity Development from a Baseline Timepoint. In: Rekik, I., Adeli, E., Park, S.H., Schnabel, J. (eds) Predictive Intelligence in Medicine. PRIME 2021. Lecture Notes in Computer Science(), vol 12928. Springer, Cham. https://doi.org/10.1007/978-3-030-87602-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87602-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87601-2

  • Online ISBN: 978-3-030-87602-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics