Skip to main content

Transfer Learning in Optical Microscopy

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12965)


Image synthesis is nowadays a very rapidly evolving branch of deep learning. One of possible applications of image synthesis is an image-to-image translation. There is currently a lot of focus orientated to applications of image translation in medicine, mainly involving translation between different screening techniques. One of other possible use of image translation in medicine and biology is in the task of translation between various imaging techniques in modern microscopy. In this paper, we propose a novel method based on DenseNet architecture and we compare it with Pix2Pix model in the task of translation from images imaged using phase-contrast technique to fluorescence images with focus on usability for cell segmentation.


  • Machine learning
  • GAN
  • Fluorescence microscopy
  • Phase-contrast microscopy
  • Image synthesis

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Aida, S., Okugawa, J., Fujisaka, S., Kasai, T., Kameda, H., Sugiyama, T.: Deep learning of cancer stem cell morphology using conditional generative adversarial networks. Biomolecules 10(6), 931 (2020)

    CrossRef  Google Scholar 

  2. Christiansen, E.M., et al.: In silico labeling: predicting fluorescent labels in unlabeled images. Cell 173(3), 792–803.e19 (2018)

    Google Scholar 

  3. Han, L., Yin, Z.: Transferring microscopy image modalities with conditional generative adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 851–859 (2017)

    Google Scholar 

  4. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2018)

    Google Scholar 

  5. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks (2018)

    Google Scholar 

  6. Itskovitz-Eldor, J.: 20th anniversary of isolation of human embryonic stem cells: a personal perspective. Stem Cell Rep. 10(5), 1439–1441 (2018). May

    CrossRef  Google Scholar 

  7. Landry, S., McGhee, P.L., Girardin, R.J., Keeler, W.J.: Monitoring live cell viability: comparative study of fluorescence, oblique incidence reflection and phase contrast microscopy imaging techniques. Opt. Express 12(23), 5754–5759 (2004)

    CrossRef  Google Scholar 

  8. Lee, G., Oh, J.W., Her, N.G., Jeong, W.K.: DeepHCS++: bright-field to fluorescence microscopy image conversion using multi-task learning with adversarial losses for label-free high-content screening. Med. Image Anal. 70, 101995 (2021)

    CrossRef  Google Scholar 

  9. Lee, G., Oh, J.-W., Kang, M.-S., Her, N.-G., Kim, M.-H., Jeong, W.-K.: DeepHCS: bright-field to fluorescence microscopy image conversion using deep learning for label-free high-content screening. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 335–343. Springer, Cham (2018).

    CrossRef  Google Scholar 

  10. Löser, P., Schirm, J., Guhr, A., Wobus, A.M., Kurtz, A.: Human embryonic stem cell lines and their use in international research. Stem Cells 28, 240–246 (2009)

    CrossRef  Google Scholar 

  11. Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014)

    Google Scholar 

  12. Ounkomol, C., Seshamani, S., Maleckar, M.M., Collman, F., Johnson, G.R.: Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat. Methods 15(11), 917–920 (2018)

    CrossRef  Google Scholar 

  13. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting (2016)

    Google Scholar 

  14. Polic, R.: Phase-contrast microscopy principle and applications in materials sciences, May 2020

    Google Scholar 

  15. Robson, A.L., et al.: Advantages and limitations of current imaging techniques for characterizing liposome morphology. Front. Pharmacol. 9, 80 (2018)

    CrossRef  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).

    CrossRef  Google Scholar 

  17. Rost, F.: Fluorescence microscopy, applications. In: Lindon, J.C., Tranter, G.E., Koppenaal, D.W. (eds.) Encyclopedia of Spectroscopy and Spectrometry, 3rd edn, pp. 627–631. Academic Press, Oxford (2017)

    Google Scholar 

  18. Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex polygons. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 265–273. Springer, Cham (2018).

    CrossRef  Google Scholar 

  19. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of the Seventh International Conference on Document Analysis and Recognition, pp. 958–963 (2003)

    Google Scholar 

  20. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Martin Kozlovský .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozlovský, M., Wiesner, D., Svoboda, D. (2021). Transfer Learning in Optical Microscopy. In: Svoboda, D., Burgos, N., Wolterink, J.M., Zhao, C. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2021. Lecture Notes in Computer Science(), vol 12965. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87591-6

  • Online ISBN: 978-3-030-87592-3

  • eBook Packages: Computer ScienceComputer Science (R0)