Skip to main content

A Glimpse into the Future: Disease Progression Simulation for Breast Cancer in Mammograms

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12965)


Simulating the disease progression of a suspicious finding in mammography (MG) images could assist in the early detection of breast cancer, where the telltale signs of malignancy are subtle and hard to detect. It could also decrease both unnecessary biopsies and treatments of indolent or low-grade disease that might otherwise remain asymptomatic. We propose a novel approach to simulating disease progression, as a significant step towards those goals. Our architecture uses the powerful Wasserstein GAN in combination with a novel component that simulates the progression of the disease in deep feature space. This allows us to learn from unlabeled longitudinal MG pairs of current and prior studies, stabilize the learning procedure, and overcome misalignment between the MG pairs. Our output image replicates an actual MG image, maintains the prior’s shape and general appearance while also containing a finding with characteristics that resemble the current image’s suspicious finding. We simulate a progression of: (i) a full MG prior image in low-resolution, and (ii) a high-resolution patch in suspicious areas of the prior image. We demonstrate the effectiveness of our pipeline in achieving the above goals using quantitative and qualitative metrics and a reader study. Our results show the high quality of our simulation and the promise it holds for early risk stratification.


  • Disease progression
  • Mammography
  • Generative models

M. Raboh, S. Perek—Authors contributed equally.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Abdelhafiz, D., Bi, J., Ammar, R., Yang, C., Nabavi, S.: Convolutional neural network for automated mass segmentation in mammography. BMC Bioinform. 21(1), 1–19 (2020)

    CrossRef  Google Scholar 

  2. Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. arXiv preprint arXiv:1701.04862 (2017)

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint arXiv:1701.07875 (2017)

  4. Borji, A.: Pros and cons of gan evaluation measures. Comput. Vis. Image Underst. 179, 41–65 (2019)

    CrossRef  Google Scholar 

  5. Chen, Y.C., et al.: Facelet-bank for fast portrait manipulation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3541–3549 (2018)

    Google Scholar 

  6. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016).

    CrossRef  Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014).

  8. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein gans. arXiv preprint arXiv:1704.00028 (2017)

  9. IBM Research, H.: Fusemedml: (2021).,

  10. Korkinof, D., Rijken, T., O’Neill, M., Yearsley, J., Harvey, H., Glocker, B.: High-resolution mammogram synthesis using progressive generative adversarial networks. arXiv preprint arXiv:1807.03401 (2018)

  11. Lee, H., Kim, S.T., Lee, J.-H., Ro, Y.M.: Realistic breast mass generation through BIRADS category. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 703–711. Springer, Cham (2019).

    CrossRef  Google Scholar 

  12. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  13. Monticciolo, D., Helvie, M., Hendrick, R.E.: Current issues in the overdiagnosis and overtreatment of breast cancer. Am. J. Roentgenol. 210, 1–7 (2017).

  14. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  15. Ravi, D., Alexander, D.C., Oxtoby, N.P.: Degenerative adversarial NeuroImage nets: generating images that mimic disease progression. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 164–172. Springer, Cham (2019).

    CrossRef  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).

    CrossRef  Google Scholar 

  17. Sathyan, A., Martis, D., Cohen, K.: Mass and calcification detection from digital mammograms using unets. In: 2020 7th International Conference on Soft Computing & Machine Intelligence (ISCMI), pp. 229–232. IEEE (2020)

    Google Scholar 

  18. Shen, T., Gou, C., Wang, F.Y., He, Z., Chen, W.: Learning from adversarial medical images for x-ray breast mass segmentation. Comput. Methods Progr. Biomed. 180, 105012 (2019)

    CrossRef  Google Scholar 

  19. Sun, H., et al.: Aunet: attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms. Phys. Med. Biol. 65(5), 055005 (2020)

    CrossRef  Google Scholar 

  20. Upchurch, P., et al.: Deep feature interpolation for image content changes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7064–7073 (2017)

    Google Scholar 

  21. Wegmayr, V., Hörold, M., Buhmann, J.M.: Generative aging of brain MR-images and prediction of Alzheimer progression. In: Fink, G.A., Frintrop, S., Jiang, X. (eds.) DAGM GCPR 2019. LNCS, vol. 11824, pp. 247–260. Springer, Cham (2019).

    CrossRef  Google Scholar 

  22. Zhao, Y., Ma, B., Jiang, P., Zeng, D., Wang, X., Li, S.: Prediction of Alzheimer’s disease progression with multi-information generative adversarial network. IEEE J. Biomed. Health Inform. 25(3), 711–719 (2020).

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jubran, I., Raboh, M., Perek, S., Gruen, D., Hexter, E. (2021). A Glimpse into the Future: Disease Progression Simulation for Breast Cancer in Mammograms. In: Svoboda, D., Burgos, N., Wolterink, J.M., Zhao, C. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2021. Lecture Notes in Computer Science(), vol 12965. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87591-6

  • Online ISBN: 978-3-030-87592-3

  • eBook Packages: Computer ScienceComputer Science (R0)