Skip to main content

Detail Matters: High-Frequency Content for Realistic Synthetic MRI Generation

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12965)

Abstract

Deep Learning (DL)-based segmentation methods have been quite successful in various medical imaging applications. The main bottleneck of these methods is the scarcity of quality-labelled samples needed for their training. The lack of labelled training data is often addressed by augmentation methods, which aim to synthesise realistic samples with corresponding labels. While the synthesis of realistic samples remains a challenging task, little is known about the impact of fine detail in synthetic data on the performance of DL-based segmentation models. In this work, we investigate whether, and to what extent, the high-frequency (HF) detail in synthetic brain MR images (MRIs) impacts the performance of DL-based segmentation methods. To assess the impact of HF detail, we generate two synthetic datasets, with and without HF detail and train corresponding segmentation models to evaluate the impact on their performance. The results obtained demonstrate that the presence of HF detail in synthetic brain MRIs, used during training, significantly improve the Dice score up to 1.73% for Gray Matter (GM), 1.34% for White Matter (WM) and 4.41% for Cerebrospinal Fluid (CSF); and therefore justify the need for synthesising realistic-looking MRIs.

Keywords

  • Data augmentation
  • Brain MRI
  • Generative adversarial network
  • Realistic brain MRI synthesis

This work was funded in part through an Australian Department of Industry, Energy and Resources CRC-P project between CSIRO, Maxwell Plus and I-Med Radiology Network.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.

  2. 2.

    The pytorch implementation of vox2vox taken from https://github.com/enochkan/vox2vox.

References

  1. Acosta, O., et al.: Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps. Med. Image Anal. 13(5), 730–743 (2009)

    CrossRef  Google Scholar 

  2. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    CrossRef  Google Scholar 

  3. Avants, B.B., Tustison, N., Song, G.: Advanced normalization tools (ANTS). Insight J 2(365), 1–35 (2009)

    Google Scholar 

  4. Chen, C., et al.: Realistic adversarial data augmentation for MR image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 667–677. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_65

    CrossRef  Google Scholar 

  5. Cirillo, M.D., Abramian, D., Eklund, A.: Vox2vox: 3D-GAN for brain tumour segmentation. arXiv preprint arXiv:2003.13653 (2020)

  6. Coupé, P., et al.: AssemblyNet: a large ensemble of CNNs for 3D whole brain MRI segmentation. Neuroimage 219, 117026 (2020)

    CrossRef  Google Scholar 

  7. Eaton-Rosen, Z., Bragman, F., Ourselin, S., Cardoso, M.J.: Improving data augmentation for medical image segmentation (2018)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in neural information processing systems, pp. 2672–2680 (2014)

    Google Scholar 

  9. Henschel, L., Conjeti, S., Estrada, S., Diers, K., Fischl, B., Reuter, M.: FastSurfer-a fast and accurate deep learning based neuroimaging pipeline. NeuroImage 117012 (2020)

    Google Scholar 

  10. Huang, S.G., Chung, M.K., Qiu, A., Initiative, A.D.N.: Fast mesh data augmentation via chebyshev polynomial of spectral filtering. arXiv preprint arXiv:2010.02811 (2020)

  11. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  12. Jack Jr., C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging: Off. J. Int. Soc. Magn. Reson. Med. 27(4), 685–691 (2008)

    Google Scholar 

  13. Jog, A., Carass, A., Roy, S., Pham, D.L., Prince, J.L.: MR image synthesis by contrast learning on neighborhood ensembles. Med. Image Anal. 24(1), 63–76 (2015)

    CrossRef  Google Scholar 

  14. Keong, C.C., Wei, H.E.T.: Synthesis of 3D MRI brain images with shape and texture generative adversarial deep neural networks. IEEE Access 9, 64747–64760 (2021)

    CrossRef  Google Scholar 

  15. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  16. Lee, J., Kim, E., Lee, S., Lee, J., Yoon, S.: FickleNet: weakly and semi-supervised semantic image segmentation using stochastic inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5267–5276 (2019)

    Google Scholar 

  17. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    CrossRef  Google Scholar 

  19. Roy, A.G., Conjeti, S., Navab, N., Wachinger, C., Initiative, A.D.N., et al.: QuickNAT: a fully convolutional network for quick and accurate segmentation of neuroanatomy. Neuroimage 186, 713–727 (2019)

    CrossRef  Google Scholar 

  20. Rusak, F., et al.: 3D brain MRI GAN-based synthesis conditioned on partial volume maps. In: Burgos, N., Svoboda, D., Wolterink, J.M., Zhao, C. (eds.) SASHIMI 2020. LNCS, vol. 12417, pp. 11–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59520-3_2

    CrossRef  Google Scholar 

  21. Sun, L., Chen, J., Xu, Y., Gong, M., Yu, K., Batmanghelich, K.: Hierarchical amortized training for memory-efficient high resolution 3D GAN. arXiv preprint arXiv:2008.01910 (2020)

  22. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med. Image Anal. 63, 101693 (2020)

    CrossRef  Google Scholar 

  23. Uzunova, H., Ehrhardt, J., Jacob, F., Frydrychowicz, A., Handels, H.: Multi-scale GANs for memory-efficient generation of high resolution medical images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 112–120. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_13

    CrossRef  Google Scholar 

  24. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 885–896 (1999)

    CrossRef  Google Scholar 

  25. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 897–908 (1999)

    CrossRef  Google Scholar 

  26. Wang, J., Chen, Y., Wu, Y., Shi, J., Gee, J.: Enhanced generative adversarial network for 3D brain MRI super-resolution. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3627–3636 (2020)

    Google Scholar 

  27. Weiner, M.W., et al.: The Alzheimer’s disease neuroimaging initiative 3: continued innovation for clinical trial improvement. Alzheimer’s Dementia 13(5), 561–571 (2017)

    CrossRef  Google Scholar 

  28. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Image Anal. 58, 101552 (2019)

    CrossRef  Google Scholar 

  29. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  30. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8543–8553 (2019)

    Google Scholar 

  31. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  32. Zuo, L., et al.: Synthesizing realistic brain MR images with noise control. In: Burgos, N., Svoboda, D., Wolterink, J.M., Zhao, C. (eds.) SASHIMI 2020. LNCS, vol. 12417, pp. 21–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59520-3_3

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Rusak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rusak, F. et al. (2021). Detail Matters: High-Frequency Content for Realistic Synthetic MRI Generation. In: Svoboda, D., Burgos, N., Wolterink, J.M., Zhao, C. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2021. Lecture Notes in Computer Science(), vol 12965. Springer, Cham. https://doi.org/10.1007/978-3-030-87592-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87592-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87591-6

  • Online ISBN: 978-3-030-87592-3

  • eBook Packages: Computer ScienceComputer Science (R0)