Skip to main content

Information Bottleneck Attribution for Visual Explanations of Diagnosis and Prognosis

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12966)

Abstract

Visual explanation methods have an important role in the prognosis of the patients where the annotated data is limited or unavailable. There have been several attempts to use gradient-based attribution methods to localize pathology from medical scans without using segmentation labels. This research direction has been impeded by the lack of robustness and reliability. These methods are highly sensitive to the network parameters. In this study, we introduce a robust visual explanation method to address this problem for medical applications. We provide an innovative visual explanation algorithm for general purpose and as an example application we demonstrate its effectiveness for quantifying lesions in the lungs caused by the Covid-19 with high accuracy and robustness without using dense segmentation labels. This approach overcomes the drawbacks of commonly used Grad-CAM and its extended versions. The premise behind our proposed strategy is that the information flow is minimized while ensuring the classifier prediction stays similar. Our findings indicate that the bottleneck condition provides a more stable severity estimation than the similar attribution methods. The source code will be publicly available upon publication.

Keywords

  • Visual explanations
  • Covid-19
  • Weakly supervised
  • Information bottleneck attribution

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-87589-3_41
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-87589-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Bagci, U., et al.: A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging. EJNMMI Res. 3(1), 55 (2013)

    CrossRef  Google Scholar 

  2. Chassagnon, G., et al.: Ai-driven quantification, staging and outcome prediction of COVID-19 pneumonia. Med. Image Anal. 67, 101860 (2021)

    CrossRef  Google Scholar 

  3. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847 (2018). https://doi.org/10.1109/WACV.2018.00097

  4. Dubost, F., et al.: Weakly supervised object detection with 2D and 3D regression neural networks. Med. Image Anal. 65, 101767 (2020)

    CrossRef  Google Scholar 

  5. Eitel, F., Ritter, K.: Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer’s disease classification. In: Suzuki, K., et al. (eds.) ML-CDS/IMIMIC -2019. LNCS, vol. 11797, pp. 3–11. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33850-3_1

    CrossRef  Google Scholar 

  6. Harmon, S.A., et al.: Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. Nat. Commun. 11(1), 4080 (2020)

    CrossRef  Google Scholar 

  7. Li, K., et al.: CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur. Radiol. 30(8), 4407–4416 (2020)

    CrossRef  Google Scholar 

  8. Li, K., Wu, Z., Peng, K.C., Ernst, J., Fu, Y.: Tell me where to look: guided attention inference network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  9. Li, Z., et al.: A novel multiple instance learning framework for COVID-19 severity assessment via data augmentation and self-supervised learning. Med. Image Anal. 69, 101978 (2021)

    CrossRef  Google Scholar 

  10. Morozov, S.P., et al.: MosMedData: chest CT scans with COVID-19 related findings dataset (2020)

    Google Scholar 

  11. Panwar, H., Gupta, P., Siddiqui, M.K., Morales-Menendez, R., Bhardwaj, P., Singh, V.: A deep learning and grad-cam based color visualization approach for fast detection of COVID-19 cases using chest x-ray and CT-scan images. Chaos, Solitons Fractals 140, 110190 (2020)

    CrossRef  MathSciNet  Google Scholar 

  12. Schulz, K., Sixt, L., Tombari, F., Landgraf, T.: Restricting the flow: information bottlenecks for attribution. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=S1xWh1rYwB

  13. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  14. Shan, F., et al.: Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction. Med. Phys. 48(4), 1633–1645 (2021). https://doi.org/10.1002/mp.14609

    CrossRef  Google Scholar 

  15. Tang, Z., et al.: Severity assessment of COVID-19 using CT image features and laboratory indices. Phys. Med. Biol. 66(3), 035015 (2021)

    CrossRef  Google Scholar 

  16. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method, pp. 368–377 (1999)

    Google Scholar 

  17. Young, K., Booth, G., Simpson, B., Dutton, R., Shrapnel, S.: Deep neural network or dermatologist? In: Suzuki, K., et al. (eds.) ML-CDS/IMIMIC -2019. LNCS, vol. 11797, pp. 48–55. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33850-3_6

    CrossRef  Google Scholar 

  18. Zhang, H., et al.: ResNeSt: split-attention networks. arXiv preprint arXiv:2004.08955 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Demir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Demir, U. et al. (2021). Information Bottleneck Attribution for Visual Explanations of Diagnosis and Prognosis. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87589-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87588-6

  • Online ISBN: 978-3-030-87589-3

  • eBook Packages: Computer ScienceComputer Science (R0)