Skip to main content

Robust Ultrasound-to-Ultrasound Registration for Intra-operative Brain Shift Correction with a Siamese Neural Network

  • Conference paper
  • First Online:
Simplifying Medical Ultrasound (ASMUS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12967))

Included in the following conference series:

Abstract

In brain tumor resection, soft tissue shift (called brain shift) can displace the surgical target and render the surgical plan invalid. Intra-operative ultrasound (iUS) with robust image registration algorithms can effectively correct brain shift to ensure quality of resection and patient safety. Herein, we proposed a novel technique to automatically align iUS scans acquired before and after tumor resection, in order to confirm removal of cancerous tissues while minimizing resection of healthy tissue. More specifically, we employed a Siamese network to locate matching anatomical landmarks within iUS scans. Selected landmarks were used to search for the best affine transformation to align iUS obtained at different surgical stages. The proposed method was validated with the publicly available REtroSpective Evaluation of Cerebral Tumors (RESECT) database. After image alignment, the mean target registration error (mTRE) was effectively reduced from 3.55 ± 1.76 mm to 1.26 ± 0.48 mm in before and after resection and from 3.49 ± 1.56 mm to 1.16 ± 0.49 mm in before and during resection. In general, the results are comparable to the state-of-the-art techniques, validated on the same database, and our technique demonstrated excellent performance in iUS-based brain shift correction for optimal therapeutic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Unsgaard, G., et al.: Intra-operative 3d ultrasound in neurosurgery. Acta Neurochir. 148(3), 235–253 (2006)

    Article  Google Scholar 

  2. Xiao, Y., Eikenes, L., Reinertsen, I., Rivaz, H.: Nonlinear deformation of tractography in ultrasound-guided low-grade gliomas resection. Int. J. Comput. Assist. Radiol. Surg. 13(3), 457–467 (2018)

    Article  Google Scholar 

  3. Wein, W.: Brain-shift correction with image-based registration and landmark accuracy evaluation. In: Stoyanov, D., et al. (eds.) POCUS/BIVPCS/CuRIOUS/CPM 2018. LNCS, vol. 11042, pp. 146–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01045-4_17

    Chapter  Google Scholar 

  4. Heinrich, M.P.: Intra-operative ultrasound to MRI fusion with a public multimodal discrete registration tool. In: Stoyanov, D., et al. (eds.) POCUS/BIVPCS/CuRIOUS/CPM 2018. LNCS, vol. 11042, pp. 159–164. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01045-4_19

    Chapter  Google Scholar 

  5. Masoumi, N., Xiao, Y., Rivaz, H.: ARENA: inter-modality affine registration using evolutionary strategy. Int. J. Comput. Assist. Radiol. Surg. 14(3), 441–450 (2019)

    Article  Google Scholar 

  6. Marko, N.F., Weil, R.J., Schroeder, J.L., Lang, F.F., Suki, D., Sawaya, R.E.: Extent of resection of glioblastoma revisited: personalized survival modeling facilitates more accurate survival prediction and supports a maximum-safe-resection approach to surgery. J. Clin. Oncol. 32(8), 774 (2014)

    Article  Google Scholar 

  7. Xiao, Y., et al.: Evaluation of MRI to ultrasound registration methods for brain shift correction: the curious2018 challenge. IEEE Trans. Med. Imaging 39(3), 777–786 (2020)

    Article  Google Scholar 

  8. Lu, X., Zhang, S., Yang, W., Chen, Y.: Sift and shape information incorporated into fluid model for non-rigid registration of ultrasound images. Comput. Methods Programs Biomed. 100(2), 123–131 (2010)

    Article  Google Scholar 

  9. Urschler, M., Bauer, J., Ditt, H., Bischof, H.: SIFT and shape context for feature-based nonlinear registration of thoracic CT images. In: Beichel, R.R., Sonka, M. (eds.) CVAMIA 2006. LNCS, vol. 4241, pp. 73–84. Springer, Heidelberg (2006). https://doi.org/10.1007/11889762_7

    Chapter  Google Scholar 

  10. Machado, I., et al.: Non-rigid registration of 3d ultrasound for neurosurgery using automatic feature detection and matching. Int. J. Comput. Assist. Radiol. Surg. 13(10), 1525–1538 (2018)

    Article  Google Scholar 

  11. Canalini, L., Klein, J., Miller, D., Kikinis, R.: Enhanced registration of ultrasound volumes by segmentation of resection cavity in neurosurgical procedures. Int. J. Comput. Assist. Radiol. Surg. 15(12), 1963–1974 (2020). https://doi.org/10.1007/s11548-020-02273-1

    Article  Google Scholar 

  12. Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic Siamese network for visual object tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1763–1771 (2017)

    Google Scholar 

  13. He, A., Luo, C., Tian, X., Zeng, W.: A twofold Siamese network for real-time object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4834–4843 (2018)

    Google Scholar 

  14. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional Siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  15. Gomariz, A., Li, W., Ozkan, E., Tanner, C., Goksel, O.: Siamese networks with location prior for landmark tracking in liver ultrasound sequences. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1757–1760. IEEE (2019)

    Google Scholar 

  16. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2. Lille (2015)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  18. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  19. Pytorch-SiamFC. https://github.com/rafellerc/Pytorch-SiamFC. Accessed 29 June 2021

  20. Xiao, Y., Fortin, M., Unsgård, G., Rivaz, H., Reinertsen, I.: Retrospective evaluation of cerebral tumors (RESECT): a clinical database of pre-operative MRI and intra-operative ultrasound in low-grade glioma surgeries. Med. Phys. 44(7), 3875–3882 (2017)

    Article  Google Scholar 

  21. Heinrich, M.P., Hansen, L.: Highly accurate and memory efficient unsupervised learning-based discrete CT registration using 2.5D displacement search. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 190–200. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_19

    Chapter  Google Scholar 

  22. Holland, P.W., Welsch, R.E.: Robust regression using iteratively reweighted least-squares. Commun. Stat. Theory Methods 6(9), 813–827 (1977)

    Article  Google Scholar 

  23. Rivaz, H., Boctor, E.M., Choti, M.A., Hager, G.D.: Real-time regularized ultrasound elastography. IEEE Trans. Med. Imaging 30(4), 928–945 (2010)

    Article  Google Scholar 

  24. Canalini, L., Klein, J., Miller, D., Kikinis, R.: Segmentation-based registration of ultrasound volumes for glioma resection in image-guided neurosurgery. Int. J. Comput. Assist. Radiol. Surg. 14(10), 1697–1713 (2019). https://doi.org/10.1007/s11548-019-02045-6

    Article  Google Scholar 

  25. Luo, J., et al.: Do public datasets assure unbiased comparisons for registration evaluation? arXiv preprint arXiv:2003.09483 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Pirhadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pirhadi, A., Rivaz, H., Ahmad, M.O., Xiao, Y. (2021). Robust Ultrasound-to-Ultrasound Registration for Intra-operative Brain Shift Correction with a Siamese Neural Network. In: Noble, J.A., Aylward, S., Grimwood, A., Min, Z., Lee, SL., Hu, Y. (eds) Simplifying Medical Ultrasound. ASMUS 2021. Lecture Notes in Computer Science(), vol 12967. Springer, Cham. https://doi.org/10.1007/978-3-030-87583-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87583-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87582-4

  • Online ISBN: 978-3-030-87583-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics