Skip to main content

Automatic Fetal Gestational Age Estimation from First Trimester Scans

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12967))

Abstract

Automatic Gestational Age (GA) estimation based on the Crown Rump Length (CRL) measurement is the preferred solution to overcome the challenges while using the last menstrual period (LMP) to date pregnancies. However, GA estimation based on CRL requires accurate placement of calipers on the fetal crown and rump which is not always a straightforward task, especially for an inexperienced sonographer. This paper proposes an accurate GA estimation method from fetal CRL images during the first trimester scan. The method addresses this problem by segmenting the fetus using a binary and multi-class U-Net. The fetal segmentation is used to compute the CRL. This is then followed by an estimation of GA from the automatic CRL measurement based of clinical information. The results from the multi-class segmentation achieves a more accurate precision, recall, Dice, and Jaccard. This has also led to a more accurate CRL measurement and hence more robust GA estimation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   53.49
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   71.49
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zupan, J.: Perinatal mortality in developing countries. N. Engl. J. Med. 352, 2047–2048 (2005)

    Article  Google Scholar 

  2. Karl, S., et al.: Preterm or not-an evaluation of estimates of gestational age in a cohort of women from Rural Papua New Guinea. PLoS ONE 10, e0124286 (2015)

    Google Scholar 

  3. Rijken, M.J., et al.: Quantifying low birth weight, preterm birth and small-for-gestational-age effects of malaria in pregnancy: a population cohort study. PLoS ONE 9, e100247 (2014)

    Google Scholar 

  4. Alexander, G.R., Tompkins, M.E., Petersen, D.J., Hulsey, T.C., Mor, J.: Discordance between LMP-based and clinically estimated gestational age: implications for research, programs, and policy. Public Health Rep. 110, 395–402 (1995)

    Google Scholar 

  5. Callaghan, W.M., Dietz, P.M.: Differences in birth weight for gestational age distributions according to the measures used to assign gestational age. Am. J. Epidemiol. 171, 826–836 (2010)

    Article  Google Scholar 

  6. Whitworth, M., Bricker, L., Mullan, C.: Ultrasound for fetal assessment in early pregnancy. Cochrane Database Syst. Rev. CD007058 (2015)

    Google Scholar 

  7. Papageorghiou, A.T., et al.: International standards for early fetal size and pregnancy dating based on ultrasound measurement of crown-rump length in the first trimester of pregnancy. Fetal International, and Century Newborn Growth Consortium for the 21st. Ultrasound Obstet. Gynecol. 44, 641–648 (2014)

    Google Scholar 

  8. Bradburn, E.H., Hin Lee, L., Noble, J.A., Papageorghiou, A.T.: OC10.04: estimating fetal gestational age based on ultrasound image characteristics using artificial intelligence. Ultrasound Obstetr. Gynecol. 56, 28–29 (2020)

    Google Scholar 

  9. Bradburn, E., Mohammad, Y., Noble, J., Papageorghiou, A.: OC10.05: an artificial intelligence system that can correctly identify fetal ultrasound imaging planes throughout gestational age. Ultrasound Obstet. Gynecol. 56, 29 (2020). https://doi.org/10.1002/uog.22269

  10. Włodarczyk, T., et al.: Estimation of preterm birth markers with U-Net segmentation network. In: Wang, Q., et al. (eds.) PIPPI/SUSI-2019. LNCS, vol. 11798, pp. 95–103. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32875-7_11

    Chapter  Google Scholar 

  11. Włodarczyk, T., et al.: Spontaneous preterm birth prediction using convolutional neural networks. In: Hu, Y., et al. (eds.) ASMUS/PIPPI -2020. LNCS, vol. 12437, pp. 274–283. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60334-2_27

    Chapter  Google Scholar 

  12. Namburete, A.I.L., Xie, W., Noble, J.A.: Robust regression of brain maturation from 3D fetal neurosonography using CRNs. In: Cardoso, M.J., et al. (eds.) FIFI/OMIA-2017. LNCS, vol. 10554, pp. 73–80. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67561-9_8

    Chapter  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevim Cengiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cengiz, S., Yaqub, M. (2021). Automatic Fetal Gestational Age Estimation from First Trimester Scans. In: Noble, J.A., Aylward, S., Grimwood, A., Min, Z., Lee, SL., Hu, Y. (eds) Simplifying Medical Ultrasound. ASMUS 2021. Lecture Notes in Computer Science(), vol 12967. Springer, Cham. https://doi.org/10.1007/978-3-030-87583-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87583-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87582-4

  • Online ISBN: 978-3-030-87583-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics