Abstract
Automatic Gestational Age (GA) estimation based on the Crown Rump Length (CRL) measurement is the preferred solution to overcome the challenges while using the last menstrual period (LMP) to date pregnancies. However, GA estimation based on CRL requires accurate placement of calipers on the fetal crown and rump which is not always a straightforward task, especially for an inexperienced sonographer. This paper proposes an accurate GA estimation method from fetal CRL images during the first trimester scan. The method addresses this problem by segmenting the fetus using a binary and multi-class U-Net. The fetal segmentation is used to compute the CRL. This is then followed by an estimation of GA from the automatic CRL measurement based of clinical information. The results from the multi-class segmentation achieves a more accurate precision, recall, Dice, and Jaccard. This has also led to a more accurate CRL measurement and hence more robust GA estimation.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Zupan, J.: Perinatal mortality in developing countries. N. Engl. J. Med. 352, 2047–2048 (2005)
Karl, S., et al.: Preterm or not-an evaluation of estimates of gestational age in a cohort of women from Rural Papua New Guinea. PLoS ONE 10, e0124286 (2015)
Rijken, M.J., et al.: Quantifying low birth weight, preterm birth and small-for-gestational-age effects of malaria in pregnancy: a population cohort study. PLoS ONE 9, e100247 (2014)
Alexander, G.R., Tompkins, M.E., Petersen, D.J., Hulsey, T.C., Mor, J.: Discordance between LMP-based and clinically estimated gestational age: implications for research, programs, and policy. Public Health Rep. 110, 395–402 (1995)
Callaghan, W.M., Dietz, P.M.: Differences in birth weight for gestational age distributions according to the measures used to assign gestational age. Am. J. Epidemiol. 171, 826–836 (2010)
Whitworth, M., Bricker, L., Mullan, C.: Ultrasound for fetal assessment in early pregnancy. Cochrane Database Syst. Rev. CD007058 (2015)
Papageorghiou, A.T., et al.: International standards for early fetal size and pregnancy dating based on ultrasound measurement of crown-rump length in the first trimester of pregnancy. Fetal International, and Century Newborn Growth Consortium for the 21st. Ultrasound Obstet. Gynecol. 44, 641–648 (2014)
Bradburn, E.H., Hin Lee, L., Noble, J.A., Papageorghiou, A.T.: OC10.04: estimating fetal gestational age based on ultrasound image characteristics using artificial intelligence. Ultrasound Obstetr. Gynecol. 56, 28–29 (2020)
Bradburn, E., Mohammad, Y., Noble, J., Papageorghiou, A.: OC10.05: an artificial intelligence system that can correctly identify fetal ultrasound imaging planes throughout gestational age. Ultrasound Obstet. Gynecol. 56, 29 (2020). https://doi.org/10.1002/uog.22269
Włodarczyk, T., et al.: Estimation of preterm birth markers with U-Net segmentation network. In: Wang, Q., et al. (eds.) PIPPI/SUSI-2019. LNCS, vol. 11798, pp. 95–103. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32875-7_11
Włodarczyk, T., et al.: Spontaneous preterm birth prediction using convolutional neural networks. In: Hu, Y., et al. (eds.) ASMUS/PIPPI -2020. LNCS, vol. 12437, pp. 274–283. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60334-2_27
Namburete, A.I.L., Xie, W., Noble, J.A.: Robust regression of brain maturation from 3D fetal neurosonography using CRNs. In: Cardoso, M.J., et al. (eds.) FIFI/OMIA-2017. LNCS, vol. 10554, pp. 73–80. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67561-9_8
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Cengiz, S., Yaqub, M. (2021). Automatic Fetal Gestational Age Estimation from First Trimester Scans. In: Noble, J.A., Aylward, S., Grimwood, A., Min, Z., Lee, SL., Hu, Y. (eds) Simplifying Medical Ultrasound. ASMUS 2021. Lecture Notes in Computer Science(), vol 12967. Springer, Cham. https://doi.org/10.1007/978-3-030-87583-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-87583-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87582-4
Online ISBN: 978-3-030-87583-1
eBook Packages: Computer ScienceComputer Science (R0)
