Skip to main content

Investigating the Use of Machine Learning Techniques in a Random Physical System

  • Conference paper
  • First Online:
Service-Oriented Computing (SummerSOC 2021)

Abstract

Machine learning (ML) techniques have seen increasing use in recent years in complementing traditional HPC solutions to physical systems problems. While the scientific community has been rapidly adopting such techniques, it is still unclear how different ML techniques compare in terms of accuracy. In this paper we address this question by designing and training a neural network and comparing its performance to traditional classification models using as a case study a non-interacting quantum system on a graph structure. We build a classifier with the ability to distinguish extended from localized quantum states based on their different structure and compare it with other commonly used ML classifiers. Our results show high accuracy for certain ML models in most cases, whereas others are less effective.

Supported by the Greek Research Technology Development and Innovation Action “RESEARCH - CREATE - INNOVATE”, Operational Programme on Competitiveness, Entrepreneurship and Innovation 2014–2020, Grant T1E\(\Delta \)K-04819.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://colab.research.google.com/.

  2. 2.

    https://www.tensorflow.org/.

  3. 3.

    https://keras.io/.

  4. 4.

    https://networkx.github.io/documentation/stable/tutorial.html.

  5. 5.

    http://www.netlib.org/lapack/lapack-3.1.1/html/dsyevx.f.html.

  6. 6.

    https://hpc.grnet.gr/en/.

  7. 7.

    https://scikit-learn.org/stable/.

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

  2. Biamonte, J., Wittek, P., Pancotti, N. et al.: Quantum machine learning. Nature 549, 195–202 (2017). https://doi.org/10.1038/nature23474

  3. Carrasquilla, J., Melko, R. G.: Machine learning phases of matter. Nat. Phys. 13, 431–434 (2017). https://doi.org/10.1038/nphys4035

  4. Carrasquilla, J.: Machine Learning for Quantum Matter. arXiv:2003.11040 (2020) https://arxiv.org/abs/2003.11040

  5. Carleo, G., et al.: Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019). https://doi.org/10.1103/RevModPhys.91.045002

  6. Schmidt, J., Marques, M.R.G., Botti, S. et al.: Recent advances and applications of machine learning in solid-state materials science. NNI Comput Mater 5, 83 (2019). https://doi.org/10.1038/s41524-019-0221-0

  7. Yu, S., Piao, X., Park, N.: Machine learning identifies scale-free properties in disordered materials. Nat. Commun. 11, 4842 (2020). https://doi.org/10.1038/s41467-020-18653-9

  8. Ohtsuki T., Mano T.: Drawing of phase diagrams random quantum systems by deep learning the wave functions. J. Phys. Soc. Jpn. 89, 022001 (2020). https://doi.org/10.7566/JPSJ.89.022001

  9. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

  10. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958). https://doi.org/10.1103/PhysRev.109.1492

  11. Altman, E.: Many-body localization and quantum thermalization. Nat. Phys. 14, 979–983 (2018). https://doi.org/10.1038/s41567-018-0305-7

  12. Altshuler, B. L., Cuevas, L., Ioffe, L. B., Kravtsov, V. E.: Nonergodic phases in strongly disordered random regular graphs. Phys. Rev. Lett. 117, 156601 (2016). https://doi.org/10.1103/PhysRevLett.117.156601

  13. Atas, Y.Y., Bogomolny, E., Giraud, O., Roux, G.: Distribution of the ratio of consecutive level spacings in random matrix ensembles. Phys. Rev. Lett. 110 084101 (2013). https://doi.org/10.1103/PhysRevLett.110.084101

  14. Tikhonov, K.S., Mirlin, A.D., Skvortsov, M.A.: Anderson localization and ergodicity on random regular graphs. Phys. Rev. B 94, 220203(R) (2016). https://doi.org/10.1103/PhysRevB.94.220203

  15. Zhang, W., Wang, L., Wang, Z.: Interpretable machine learning study of the many-body localization transition in disordered quantum using spin chains. Phys. Rev. B 99, 054208 (2019). https://doi.org/10.1103/PhysRevB.99.054208

  16. Alexandru, A., Bedaque, B. F., Lawrence, S.: Quantum algorithms for disordered physics. Phys. Rev. A 101, 032325 (2020). https://doi.org/10.1103/PhysRevA.101.032325

  17. Barzen, J., Leymann, F.: Quantum humanities: a vision for quantum computing in digital humanities. SICS Softw.-Inten. Cyber-Phys. Syst. 153–158 (2019). https://doi.org/10.1007/s00450-019-00419-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Magoutis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stamatiou, G.T., Magoutis, K. (2021). Investigating the Use of Machine Learning Techniques in a Random Physical System. In: Barzen, J. (eds) Service-Oriented Computing. SummerSOC 2021. Communications in Computer and Information Science, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-030-87568-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87568-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87567-1

  • Online ISBN: 978-3-030-87568-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics