Skip to main content

Automating the Comparison of Quantum Compilers for Quantum Circuits

  • Conference paper
  • First Online:
Service-Oriented Computing (SummerSOC 2021)

Abstract

For very specific problems, quantum advantage has recently been demonstrated. However, current NISQ computers are error-prone and only support small numbers of qubits. This limits the executable circuit size of an implemented quantum algorithm. Due to this limitation, it is important that compiled quantum circuits for a specific quantum computer are as resource-efficient as possible. A variety of different quantum compilers exists supporting different programming languages, gate sets, and vendors of quantum computers. However, comparing the results of several quantum compilers requires (i) deep technical knowledge and (ii) large manual effort for translating a given circuit into different languages. To tackle these challenges, we present a framework to automate the translation, compilation, and comparison of a given quantum circuit with multiple quantum compilers to support the selection of the most suitable compiled quantum circuit. For demonstrating the practical feasibility of the framework, we present a prototypical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/UST-QuAntiL.

  2. 2.

    https://github.com/UST-QuAntiL/nisq-analyzer-content.

  3. 3.

    https://youtu.be/I5l8vaA-zO8.

  4. 4.

    https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.html.

  5. 5.

    https://pyquil-docs.rigetti.com/en/latest/apidocs/program.html.

  6. 6.

    https://www.arline.io.

  7. 7.

    https://github.com/ArlineQ.

  8. 8.

    https://planqk.de/en/.

References

  1. Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y., et al.: Qiskit: an open-source framework for quantum computing (2019). https://doi.org/10.5281/zenodo.2562111

  2. Amy, M., Gheorghiu, V.: staq–a full-stack quantum processing toolkit. Quantum Sci. Technol. 5(3), 034016 (2020). https://doi.org/10.1088/2058-9565/ab9359

    Article  Google Scholar 

  3. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019). https://doi.org/10.1038/s41586-019-1666-5

    Article  Google Scholar 

  4. Bishop, L., Bravyi, S., Cross, A., Gambetta, J., Smolin, J.: Quantum volume, March 2017

    Google Scholar 

  5. Cowtan, A., Dilkes, S., Duncan, R., Krajenbrink, A., Simmons, W., et al.: On the qubit routing problem. In: 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 135, pp. 5:1–5:32. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019). https://doi.org/10.4230/LIPIcs.TQC.2019.5

  6. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly language (2017)

    Google Scholar 

  7. Fingerhuth, M., Babej, T., Wittek, P.: Open source software in quantum computing. PLOS ONE 13(12), 1–28 (2018). https://doi.org/10.1371/journal.pone.0208561

    Article  Google Scholar 

  8. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  9. IBMQ Team: 15-qubit backend: IBM Q 16 Melbourne backend specification V2.3.6 (2021). https://quantum-computing.ibm.com

  10. LaRose, R.: Overview and comparison of gate level quantum software platforms. Quantum 3, 130 (2019). https://doi.org/10.22331/q-2019-03-25-130

    Article  Google Scholar 

  11. Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms in the NISQ era. Quantum Sci. Technol. 5(4), 1–28 (2020). https://doi.org/10.1088/2058-9565/abae7d

    Article  Google Scholar 

  12. Leymann, F., Barzen, J., Falkenthal, M.: Towards a platform for sharing quantum software. In: Proceedings of the 13th Advanced Summer School on Service Oriented Computing, pp. 70–74 (2019). IBM technical report (RC25685), IBM Research Division (2019)

    Google Scholar 

  13. Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder, B., et al.: Quantum in the cloud: application potentials and research opportunities. In: Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pp. 9–24. SciTePress (2020)

    Google Scholar 

  14. Mills, D., Sivarajah, S., Scholten, T.L., Duncan, R.: Application-motivated, holistic benchmarking of a full quantum computing stack (2021). https://doi.org/10.22331/q-2021-03-22-415

  15. Murali, P., Baker, J.M., Javadi-Abhari, A., Chong, F.T., Martonosi, M.: Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2019, pp. 1015–1029. ACM (2019). https://doi.org/10.1145/3297858.3304075

  16. Murali, P., Linke, N.M., Martonosi, M., Abhari, A.J., Nguyen, N.H., et al.: Full-stack, real-system quantum computer studies: architectural comparisons and design insights. In: Proceedings of the 46th International Symposium on Computer Architecture, ISCA 2019, pp. 527–540. ACM (2019). https://doi.org/10.1145/3307650.3322273

  17. National Academies of Sciences, Engineering, and Medicine: Quantum Computing: Progress and Prospects. The National Academies Press (2019)

    Google Scholar 

  18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  19. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

    Article  Google Scholar 

  20. Quantum AI team and collaborators. Cirq (2020)

    Google Scholar 

  21. Resch, S., Karpuzcu, U.R.: Benchmarking quantum computers and the impact of quantum noise (2019)

    Google Scholar 

  22. Rieffel, E., Polak, W.: Quantum Computing: A Gentle Introduction, 1st edn. The MIT Press, Cambridge (2011)

    MATH  Google Scholar 

  23. Rigetti: Docs for the Forest SDK (2021). https://pyquil-docs.rigetti.com/

  24. Salm, M., Barzen, J., Breitenbücher, U., Leymann, F., Weder, B., Wild, K.: The NISQ analyzer: automating the selection of quantum computers for quantum algorithms. In: Dustdar, S. (ed.) SummerSOC 2020. CCIS, vol. 1310, pp. 66–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64846-6_5

    Chapter  Google Scholar 

  25. Salm, M., Barzen, J., Leymann, F., Weder, B.: About a criterion of successfully executing a circuit in the NISQ era: what \(wd \ll 1/\epsilon _\text{eff}\) really means. In: Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software (APEQS 2020), pp. 10–13. ACM (2020). https://doi.org/10.1145/3412451.3428498

  26. Sete, E.A., Zeng, W.J., Rigetti, C.T.: A functional architecture for scalable quantum computing. In: 2016 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–6 (2016). https://doi.org/10.1109/ICRC.2016.7738703

  27. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/S0036144598347011

    Article  MathSciNet  MATH  Google Scholar 

  28. Singhal, K., Rand, R., Hicks, M.: Verified translation between low-level quantum languages. In: The First International Workshop on Programming Languages for Quantum Computing (2020)

    Google Scholar 

  29. Siraichi, M.Y., dos Santos, V.F., Collange, S., Quintão Pereira, F.M.: Qubit allocation. In: CGO 2018 - International Symposium on Code Generation and Optimization, pp. 1–12 (2018). https://doi.org/10.1145/3168822

  30. Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., et al.: t\(|\)ket\(\rangle \): a retargetable compiler for NISQ devices. Quantum Sci. Technol. 6 (2020). https://doi.org/10.1088/2058-9565/ab8e92

  31. Smith, R.S., Curtis, M.J., Zeng, W.J.: A practical quantum instruction set architecture (2017)

    Google Scholar 

  32. Steiger, D.S., Häner, T., Troyer, M.: ProjectQ: an open source software framework for quantum computing. Quantum 2, 49 (2018). https://doi.org/10.22331/q-2018-01-31-49

    Article  Google Scholar 

  33. Tannu, S.S., Qureshi, M.K.: Not all qubits are created equal: a case for variability-aware policies for NISQ-era quantum computers. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2019, pp. 987–999. ACM (2019). https://doi.org/10.1145/3297858.3304007

  34. Vietz, D., Barzen, J., Leymann, F., Wild, K.: On decision support for quantum application developers: categorization, comparison, and analysis of existing technologies. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 127–141. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77980-1_10

    Chapter  Google Scholar 

  35. Wild, K., Breitenbücher, U., Harzenetter, L., Leymann, F., Vietz, D., Zimmermann, M.: TOSCA4QC: two modeling styles for TOSCA to automate the deployment and orchestration of quantum applications. In: 2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC). IEEE Computer Society (2020). https://doi.org/10.1109/EDOC49727.2020.00024

  36. Zhong, H.S., Wang, H., Deng, Y.H., Chen, M.C., Peng, L.C., et al.: Quantum computational advantage using photons. Science 370(6523), 1460–1463 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Thomas Wangler for the implementation of the Translator.

This work was partially funded by the BMWi project PlanQK (01MK20005N) and the DFG’s Excellence Initiative project SimTech (EXC 2075 - 390740016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Salm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salm, M., Barzen, J., Leymann, F., Weder, B., Wild, K. (2021). Automating the Comparison of Quantum Compilers for Quantum Circuits. In: Barzen, J. (eds) Service-Oriented Computing. SummerSOC 2021. Communications in Computer and Information Science, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-030-87568-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87568-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87567-1

  • Online ISBN: 978-3-030-87568-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics