Skip to main content

Epsilon-Near-Zero Plasmonic Waveguides for Enhanced Coherent Optical Effects

  • Chapter
  • First Online:
Plasmon-enhanced light-matter interactions

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 31))

Abstract

Plasmonic waveguides exhibit an effective epsilon-near-zero (ENZ) operation in their cut-off wavelength and Fabry-PĂ©rot resonances at lower wavelengths. In this chapter, we demonstrate a scheme to realize nonlinear coherent perfect absorption (CPA) at the nanoscale using the ENZ plasmonic waveguide nanochannels. The strong and uniform field enhancement inside the nanochannels of the waveguides at the ENZ resonance can efficiently boost Kerr nonlinearities, resulting in a new all-optical switching intensity-dependent CPA phenomenon which can be tunable with ultrafast speed. Our findings provide a new platform to efficiently excite nonlinear phenomena at the nanoscale and design tunable coherent perfect absorbers.

In addition, we demonstrate the formation of exceptional points (EP) in a nanoscale open and lossy (non-Hermitian) nanophotonic system based on gain medium embedded inside the ENZ plasmonic waveguide nanochannels. Reflectionless transmission (perfect loss compensation) at the nanoscale is realized at the EP, which coincides with the ENZ cut-off frequency of the proposed plasmonic system. This special spectral degeneracy point (EP) is a unique feature of the presented nanoscale symmetric plasmonic ENZ configuration, different from most of the previous works that were mainly focused on asymmetric bulky micron-scale active photonic configurations. When we further increase the gain coefficient of the dielectric material loaded in the waveguides, a spectral singularity occurs leading to super scattering (lasing) response at both forward and backward directions. The presented results demonstrate that ENZ plasmonic waveguides can enhance different coherent optical effects that can find a plethora of new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zayats, A. V., Smolyaninov, I. I., & Maradudin, A. A. (2005). Nano-optics of surface plasmon polaritons. Physics Reports, 408, 131–314.

    Article  ADS  Google Scholar 

  2. Gramotnev, D. K., & Bozhevolnyi, S. I. (2010). Plasmonics beyond the diffraction limit. Nature Photonics, 4, 83–91.

    Article  ADS  Google Scholar 

  3. Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9, 193–204.

    Article  ADS  Google Scholar 

  4. Meinzer, N., Barnes, W. L., & Hooper, I. R. (2014). Plasmonic meta-atoms and metasurfaces. Nature Photonics, 8, 889–898.

    Article  ADS  Google Scholar 

  5. Yao, K., & Liu, Y. (2014). Plasmonic metamaterials. Nanotechnology Reviews, 3, 177–210.

    Google Scholar 

  6. Maier, S. A. (2007). Plasmonics: Fundamentals and applications (p. 250). Springer US.

    Book  Google Scholar 

  7. Jiang, Y., Lu, W. B., Xu, H. J., Dong, Z. G., & Cui, T. J. (2012). A planar electromagnetic “black hole” based on graphene. Physics Letters A, 376, 1468–1471.

    Article  ADS  Google Scholar 

  8. Yin, L., Vlasko-Vlasov, V. K., Pearson, J., Hiller, J. M., Hua, J., Welp, U., Brown, D. E., & Kimball, C. W. (2005). Subwavelength focusing and guiding of surface plasmons. Nano Letters, 5, 1399–1402.

    Article  ADS  Google Scholar 

  9. Argyropoulos, C., Chen, P.-Y., Monticone, F., D’Aguanno, G., & Alù, A. (2012). Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Physical Review Letters, 108, 263905.

    Article  ADS  Google Scholar 

  10. Monticone, F., Argyropoulos, C., & AlĂą, A. (2012). Layered plasmonic cloaks to tailor the optical scattering at the nanoscale. Scientific Reports, 2, 912.

    Article  ADS  Google Scholar 

  11. Catchpole, K. R., & Polman, A. (2008). Plasmonic solar cells. Optics Express, 16, 21793.

    Article  ADS  Google Scholar 

  12. Le Ru, E. C., & Etchegoin, P. G. (2009). Principles of surface-enhanced Raman spectroscopy. Elsevier.

    Google Scholar 

  13. Engheta, N. (2013). Pursuing near-zero response. Science, 340, 286–287.

    Article  ADS  Google Scholar 

  14. Liberal, I., & Engheta, N. (2017). Near-zero refractive index photonics. Nature Photonics, 11, 149–158.

    Article  ADS  MATH  Google Scholar 

  15. Niu, X., Hu, X., Chu, S., & Gong, Q. (2018). Epsilon-near-zero photonics: A new platform for integrated devices. Advanced Optical Materials, 6, 1701292.

    Article  Google Scholar 

  16. Reshef, O., De Leon, I., Alam, M. Z., & Boyd, R. W. (2019). Nonlinear optical effects in epsilon-near-zero media. Nature Reviews Materials, 4, 535–551.

    Article  Google Scholar 

  17. Li, Y., & Argyropoulos, C. (2016). Controlling collective spontaneous emission with plasmonic waveguides. Optics Express, 24, 26696.

    Article  ADS  Google Scholar 

  18. Li, Y., & Argyropoulos, C. (2018). Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides. Optics Letters, 43, 1806.

    Article  ADS  Google Scholar 

  19. Li, Y., & Argyropoulos, C. (2019). Exceptional points and spectral singularities in active epsilon-near-zero plasmonic waveguides. Physical Review B, 99, 075413.

    Article  ADS  Google Scholar 

  20. Li, Y., Nemilentsau, A., & Argyropoulos, C. (2019). Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems. Nanoscale, 11, 14635–14647.

    Article  Google Scholar 

  21. Jin, B., & Argyropoulos, C. (2019). Nonreciprocal transmission in nonlinear PT-symmetric metamaterials using epsilon-near-zero media doped with defects. Advanced Optical Materials, 7, 1901083.

    Article  Google Scholar 

  22. AlĂą, A., & Engheta, N. (2008). Light squeezing through arbitrarily shaped plasmonic channels and sharp bends. Physical Review B, 78, 035440.

    Article  ADS  Google Scholar 

  23. Fleury, R., & AlĂą, A. (2013). Enhanced superradiance in epsilon-near-zero plasmonic channels. Physical Review B, 87, 201101.

    Article  ADS  Google Scholar 

  24. Argyropoulos, C., Chen, P.-Y., D’Aguanno, G., Engheta, N., & Alù, A. (2012). Boosting optical nonlinearities in ε -near-zero plasmonic channels. Physical Review B, 85, 045129.

    Article  ADS  Google Scholar 

  25. Argyropoulos, C., D’Aguanno, G., & Alù, A. (2014). Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial. Physical Review B, 89, 235401.

    Article  ADS  Google Scholar 

  26. Argyropoulos, C., Chen, P.-Y., D’Aguanno, G., & Alù, A. (2014). Temporal soliton excitation in an ε-near-zero plasmonic metamaterial. Optics Letters, 39, 5566.

    Article  ADS  Google Scholar 

  27. Silveirinha, M., & Engheta, N. (2006). Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Physical Review Letters, 97, 157403.

    Article  ADS  Google Scholar 

  28. Alù, A., Silveirinha, M. G., & Engheta, N. (2008). Transmission-line analysis of ε-near-zero–filled narrow channels. Physical Review E, 78, 016604.

    Article  ADS  Google Scholar 

  29. Gordon, R., & Brolo, A. G. (2005). Increased cut-off wavelength for a subwavelength hole in a real metal. Optics Express, 13, 1933.

    Article  ADS  Google Scholar 

  30. Chong, Y. D., Ge, L., Cao, H., & Stone, A. D. (2010). Coherent perfect absorbers: Time-reversed lasers. Physical Review Letters, 105, 053901.

    Article  ADS  Google Scholar 

  31. Baranov, D. G., Krasnok, A., Shegai, T., AlĂą, A., & Chong, Y. (2017). Coherent perfect absorbers: Linear control of light with light. Nature Reviews Materials, 2, 17064.

    Article  ADS  Google Scholar 

  32. Pirruccio, G., Ramezani, M., Rodriguez, S. R.-K., & Rivas, J. G. (2016). Coherent control of the optical absorption in a plasmonic lattice coupled to a luminescent layer. Physical Review Letters, 116, 103002.

    Article  ADS  Google Scholar 

  33. Wu, J.-H., Artoni, M., & La Rocca, G. C. (2016). Coherent perfect absorption in one-sided reflectionless media. Scientific Reports, 6, 35356.

    Article  ADS  Google Scholar 

  34. Zhang, J., Guo, C., Liu, K., Zhu, Z., Ye, W., Yuan, X., & Qin, S. (2014). Coherent perfect absorption and transparency in a nanostructured graphene film. Optics Express, 22, 12524.

    Article  ADS  Google Scholar 

  35. Fan, Y., Liu, Z., Zhang, F., Zhao, Q., Wei, Z., Fu, Q., Li, J., Gu, C., & Li, H. (2015). Tunable mid-infrared coherent perfect absorption in a graphene meta-surface. Scientific Reports, 5, 13956.

    Article  ADS  Google Scholar 

  36. Longhi, S. (2010). PT-symmetric laser absorber. Physical Review A, 82, 031801.

    Article  ADS  Google Scholar 

  37. Chong, Y. D., Ge, L., & Stone, A. D. (2011). PT-symmetry breaking and laser-absorber modes in optical scattering systems. Physical Review Letters, 106, 093902.

    Article  ADS  Google Scholar 

  38. Nireekshan Reddy, K., & Dutta Gupta, S. (2013). Light-controlled perfect absorption of light. Optics Letters, 38, 5252.

    Article  ADS  Google Scholar 

  39. Nireekshan Reddy, K., & Dutta Gupta, S. (2014). Gap solitons with null-scattering. Optics Letters, 39, 2254.

    Article  ADS  Google Scholar 

  40. Agarwal, G. S., Di, K., Wang, L., & Zhu, Y. (2016). Perfect photon absorption in the nonlinear regime of cavity quantum electrodynamics. Physical Review A, 93, 1–6.

    Google Scholar 

  41. Alù, A., & Engheta, N. (2011). Emission enhancement in a plasmonic waveguide at cut-off. Materials (Basel), 4, 141–152.

    Article  ADS  Google Scholar 

  42. Feng, S., & Halterman, K. (2012). Coherent perfect absorption in epsilon-near-zero metamaterials. Physical Review B, 86, 165103.

    Article  ADS  Google Scholar 

  43. Kim, T. Y., Badsha, M. A., Yoon, J., Lee, S. Y., Jun, Y. C., & Hwangbo, C. K. (2016). General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-near-zero multilayer films. Scientific Reports, 6, 22941.

    Article  ADS  Google Scholar 

  44. Bai, P., Ding, K., Wang, G., Luo, J., Zhang, Z., Chan, C. T., Wu, Y., & Lai, Y. (2016). Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss. Physical Review A, 94, 063841.

    Article  ADS  Google Scholar 

  45. Baum, B., Alaeian, H., & Dionne, J. (2015). A parity-time symmetric coherent plasmonic absorber-amplifier. Journal of Applied Physics, 117, 063106.

    Article  ADS  Google Scholar 

  46. Johnson, P. B., & Christy, R. W. (1972). Optical constants of the Noble metals. Physical Review B, 6, 4370–4379.

    Article  ADS  Google Scholar 

  47. Markoš, P., & Soukoulis, C. M. (2008). Wave propagation. From electrons to photonic crystals and left-handed materials (Vol. 50, Student ed.). Princeton University Press.

    Book  MATH  Google Scholar 

  48. Wan, W., Chong, Y., Ge, L., Noh, H., Stone, D., & Cao, H. (2011). Time-reversed lasing and interferometric control of absorption. Science (80-.), 331, 889–892.

    Article  ADS  Google Scholar 

  49. Wong, Z. J., Xu, Y.-L., Kim, J., O’Brien, K., Wang, Y., Feng, L., & Zhang, X. (2016). Lasing and anti-lasing in a single cavity. Nature Photonics, 10, 796–801.

    Article  ADS  Google Scholar 

  50. Boyd, R. W. (2008). Nonlinear optics (3rd ed.). Academic.

    Google Scholar 

  51. Argyropoulos, C., & Li, Y. (2018). Epsilon-near-zero plasmonic waveguides to enhance nonlinear coherent light-matter interactions. In G. S. Subramania & S. Foteinopoulou (Eds.), Active photonic platforms X (Vol. 1072106, p. 5). SPIE.

    Chapter  Google Scholar 

  52. Noginov, M. A., Zhu, G., Belgrave, A. M., Bakker, R., Shalaev, V. M., Narimanov, E. E., Stout, S., Herz, E., Suteewong, T., & Wiesner, U. (2009). Demonstration of a spaser-based nanolaser. Nature, 460, 1110–1112.

    Article  ADS  Google Scholar 

  53. Oulton, R. F., Sorger, V. J., Zentgraf, T., Ma, R.-M., Gladden, C., Dai, L., Bartal, G., & Zhang, X. (2009). Plasmon lasers at deep subwavelength scale. Nature, 461, 629–632.

    Article  ADS  Google Scholar 

  54. Khajavikhan, M., Simic, A., Katz, M., Lee, J. H., Slutsky, B., Mizrahi, A., Lomakin, V., & Fainman, Y. (2012). Thresholdless nanoscale coaxial lasers. Nature, 482, 204–207.

    Article  ADS  Google Scholar 

  55. Heiss, W. D. (2012). The physics of exceptional points. Journal of Physics A: Mathematical and Theoretical, 45, 444016.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Regensburger, A., Bersch, C., Miri, M.-A., Onishchukov, G., Christodoulides, D. N., & Peschel, U. (2012). Parity–time synthetic photonic lattices. Nature, 488, 167–171.

    Article  ADS  Google Scholar 

  57. Feng, L., Xu, Y.-L., Fegadolli, W. S., Lu, M.-H., Oliveira, J. E. B., Almeida, V. R., Chen, Y.-F., & Scherer, A. (2012). Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nature Materials, 12, 108–113.

    Article  ADS  Google Scholar 

  58. Yin, X., & Zhang, X. (2013). Unidirectional light propagation at exceptional points. Nature Materials, 12, 175–177.

    Article  ADS  Google Scholar 

  59. Wang, W., Wang, L.-Q., Xue, R.-D., Chen, H.-L., Guo, R.-P., Liu, Y., & Chen, J. (2017). Unidirectional excitation of radiative-loss-free surface plasmon polaritons in PT -symmetric systems. Physical Review Letters, 119, 077401.

    Article  ADS  Google Scholar 

  60. Peng, B., Özdemir, Ş. K., Rotter, S., Yilmaz, H., Liertzer, M., Monifi, F., Bender, C. M., Nori, F., & Yang, L. (2014). Loss-induced suppression and revival of lasing. Science, 346, 328–332.

    Article  ADS  Google Scholar 

  61. Xu, H., Mason, D., Jiang, L., & Harris, J. G. E. (2016). Topological energy transfer in an optomechanical system with exceptional points. Nature, 537, 80–83.

    Article  ADS  Google Scholar 

  62. Doppler, J., Mailybaev, A. A., Böhm, J., Kuhl, U., Girschik, A., Libisch, F., Milburn, T. J., Rabl, P., Moiseyev, N., & Rotter, S. (2016). Dynamically encircling an exceptional point for asymmetric mode switching. Nature, 537, 76–79.

    Article  ADS  Google Scholar 

  63. Cui, H.-X., Cao, X.-W., Kang, M., Li, T.-F., Yang, M., Guo, T.-J., Guo, Q.-H., & Chen, J. (2013). Exceptional points in extraordinary optical transmission through dual subwavelength metallic gratings. Optics Express, 21, 13368–13379.

    Article  ADS  Google Scholar 

  64. Zhen, B., Hsu, C. W., Igarashi, Y., Lu, L., Kaminer, I., Pick, A., Chua, S.-L., Joannopoulos, J. D., & Soljačić, M. (2015). Spawning rings of exceptional points out of Dirac cones. Nature, 525, 354–358.

    Article  ADS  Google Scholar 

  65. Kodigala, A., Lepetit, T., & Kanté, B. (2016). Exceptional points in three-dimensional plasmonic nanostructures. Physical Review B, 94, 201103.

    Article  ADS  Google Scholar 

  66. Park, J.-H., Ndao, A., Cai, W., Hsu, L., Kodigala, A., Lepetit, T., Lo, Y.-H., & Kanté, B. (2020). Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nature Physics, 16, 462–468.

    Article  ADS  Google Scholar 

  67. Kang, M., Zhu, W., Wang, H.-T., & Premaratne, M. (2017). Spawning a ring of exceptional points from a metamaterial. Optics Express, 25, 18265.

    Article  ADS  Google Scholar 

  68. Liu, Q., Wang, B., Ke, S., Long, H., Wang, K., & Lu, P. (2017). Exceptional points in Fano-resonant graphene metamaterials. Optics Express, 25, 7203.

    Article  ADS  Google Scholar 

  69. Ramezani, H., Li, H.-K., Wang, Y., & Zhang, X. (2014). Unidirectional spectral singularities. Physical Review Letters, 113, 263905.

    Article  ADS  Google Scholar 

  70. Mostafazadeh, A. (2009). Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. Physical Review Letters, 102, 220402.

    Article  ADS  Google Scholar 

  71. Feng, S. (2016). Loss-induced super scattering and gain-induced absorption. Optics Express, 24, 1291.

    Article  ADS  Google Scholar 

  72. Zhang, W., Wu, T., & Zhang, X. (2017). Tailoring eigenmodes at spectral singularities in graphene-based PT systems. Scientific Reports, 7, 11407.

    Article  ADS  Google Scholar 

  73. Liu, X., Gupta, S. D., & Agarwal, G. S. (2014). Regularization of the spectral singularity in PT-symmetric systems by all-order nonlinearities: Nonreciprocity and optical isolation. Physical Review A, 89, 013824.

    Article  ADS  Google Scholar 

  74. Savoia, S., Castaldi, G., Galdi, V., AlĂą, A., & Engheta, N. (2014). Tunneling of obliquely incident waves through PT-symmetric epsilon-near-zero bilayers. Physical Review B, 89, 085105.

    Article  ADS  Google Scholar 

  75. Savoia, S., Castaldi, G., Galdi, V., Alù, A., & Engheta, N. (2015). PT-symmetry-induced wave confinement and guiding in ε -near-zero metamaterials. Physical Review B, 91, 115114.

    Article  ADS  Google Scholar 

  76. Fu, Y., Xu, Y., & Chen, H. (2016). Zero index metamaterials with PT symmetry in a waveguide system. Optics Express, 24, 1648.

    Article  ADS  Google Scholar 

  77. Fu, Y., Zhang, X., Xu, Y., & Chen, H. (2017). Design of zero index metamaterials with PT symmetry using epsilon-near-zero media with defects. Journal of Applied Physics, 121, 094503.

    Article  ADS  Google Scholar 

  78. ÄŚtyrokĂ˝, J., Kuzmiak, V., & Eyderman, S. (2010). Waveguide structures with antisymmetric gain/loss profile. Optics Express, 18, 21585.

    Article  ADS  Google Scholar 

  79. Ramezani, H., Kottos, T., El-Ganainy, R., & Christodoulides, D. N. (2010). Unidirectional nonlinear PT-symmetric optical structures. Physical Review A, 82, 043803.

    Article  ADS  Google Scholar 

  80. Bender, N., Factor, S., Bodyfelt, J. D., Ramezani, H., Christodoulides, D. N., Ellis, F. M., & Kottos, T. (2013). Observation of asymmetric transport in structures with active nonlinearities. Physical Review Letters, 110, 234101.

    Article  ADS  Google Scholar 

  81. Fleury, R., Sounas, D. L., & AlĂą, A. (2014). Negative refraction and planar focusing based on parity-time symmetric metasurfaces. Physical Review Letters, 113, 023903.

    Article  ADS  Google Scholar 

  82. Veltri, A., Chipouline, A., & Aradian, A. (2016). Multipolar, time-dynamical model for the loss compensation and lasing of a spherical plasmonic nanoparticle spaser immersed in an active gain medium. Scientific Reports, 6, 33018.

    Article  ADS  Google Scholar 

  83. Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., & Christodoulides, D. N. (2011). Unidirectional invisibility induced by PT-symmetric periodic structures. Physical Review Letters, 106, 213901.

    Article  ADS  Google Scholar 

  84. Fang, A., Huang, Z., Koschny, T., & Soukoulis, C. M. (2011). Overcoming the losses of a split ring resonator array with gain. Optics Express, 19, 12688.

    Article  ADS  Google Scholar 

  85. Campione, S., Albani, M., & Capolino, F. (2011). Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: Loss compensation using gain [Invited]. Optical Materials Express, 1, 1077.

    ADS  Google Scholar 

  86. Sun, L., Yang, X., & Gao, J. (2013). Loss-compensated broadband epsilon-near-zero metamaterials with gain media. Applied Physics Letters, 103, 201109.

    Article  ADS  Google Scholar 

  87. AlĂą, A., & Engheta, N. (2006). Optical nanotransmission lines: Synthesis of planar left-handed metamaterials in the infrared and visible regimes. Journal of the Optical Society of America B: Optical Physics, 23, 571.

    Article  ADS  Google Scholar 

  88. Pozar, D. M. (2011). Microwave engineering (4th ed.). Wiley.

    Google Scholar 

  89. Argyropoulos, C., Ciracì, C., & Smith, D. R. (2014). Enhanced optical bistability with film-coupled plasmonic nanocubes. Applied Physics Letters, 104, 063108.

    Article  ADS  Google Scholar 

  90. Huang, Z., Baron, A., Larouche, S., Argyropoulos, C., & Smith, D. R. (2015). Optical bistability with film-coupled metasurfaces. Optics Letters, 40, 5638.

    Article  ADS  Google Scholar 

  91. Konotop, V. V., Yang, J., & Zezyulin, D. A. (2016). Nonlinear waves in PT-symmetric systems. Reviews of Modern Physics, 88, 035002.

    Article  ADS  Google Scholar 

  92. Goldzak, T., Mailybaev, A. A., & Moiseyev, N. (2018). Light stops at exceptional points. Physical Review Letters, 120, 013901.

    Article  ADS  Google Scholar 

  93. Tsakmakidis, K. L., Pickering, T. W., Hamm, J. M., Page, A. F., & Hess, O. (2014). Completely stopped and dispersionless light in plasmonic waveguides. Physical Review Letters, 112, 167401.

    Article  ADS  Google Scholar 

  94. Tsakmakidis, K. L., Hess, O., Boyd, R. W., & Zhang, X. (2017). Ultraslow waves on the nanoscale. Science, 358, eaan5196.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Science Foundation (DMR-1709612) and the Nebraska Materials Research Science and Engineering Center (MRSEC) (grant no. DMR-1420645). Ying Li is supported by the National Natural Science Foundation of China (Grant No. 12104233). Christos Argyropoulos is partially supported by the National Science Foundation/EPSCoR RII Track-1: Emergent Quantum Materials and Technologies (EQUATE) under Grant No. OIA-2044049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Argyropoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Argyropoulos, C. (2022). Epsilon-Near-Zero Plasmonic Waveguides for Enhanced Coherent Optical Effects. In: Yu, P., Xu, H., Wang, Z.M. (eds) Plasmon-enhanced light-matter interactions. Lecture Notes in Nanoscale Science and Technology, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-87544-2_3

Download citation

Publish with us

Policies and ethics