Skip to main content

Plasmon-Enhanced Optothermal Manipulation

  • Chapter
  • First Online:
Plasmon-enhanced light-matter interactions

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 31))

Abstract

Plasmon-enhanced optical heating can synergize optics and thermal fields to offer a versatile platform for optothermal manipulation of colloidal particles and living cells. By exploiting entropically favorable photon-phonon conversion and universal heat-directed migration, various optothermal tweezing techniques have been developed. Under the thermal gradient field enabled by plasmonic heating, opto-thermophoretic tweezers harness the permittivity gradient at particle-solvent interfaces to direct particles and cells toward the plasmonic hotspot via thermophoresis. Opto-thermoelectric tweezers can manipulate charged colloidal particles with various sizes, materials, and shapes in a localized electric field that is generated by the plasmon-enhanced electrolyte Seebeck effect. In addition, conventional plasmonic trapping can be significantly improved by three types of plasmon-enhanced optothermal-hydrodynamics, i.e., thermo-plasmonic convection, Marangoni convection, and electrothermoplasmonic flow. These plasmon-enhanced optothermal convective flows can rapidly transport or concentrate free-dispersed objects to the plasmonic nanostructures, which significantly enhance the trapping efficiency of micro-and nano-objects. With their low operational power, simple optics, and wide applicability, plasmon-enhanced optothermal manipulation techniques can be applied to optothermal assembly of colloidal matter, non-invasive manipulation of cells and biological objects, and in-situ characterization of optical coupling in colloidal superstructures for a wide range of applications in photonics, materials science, colloidal science, biology, and medical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., & Chu, S. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11, 288–290.

    ADS  Google Scholar 

  2. Jauffred, L., Richardson, A. C., & Oddershede, L. B. (2008). Three-dimensional optical control of individual quantum dots. Nano Letters, 8, 3376–3380. https://doi.org/10.1021/nl801962f

    Article  ADS  Google Scholar 

  3. Ashkin, A., Dziedzic, J. M., & Yamane, T. (1987). Optical trapping and manipulation of single cells using infrared laser beams. Nature, 330, 769–771. https://doi.org/10.1038/330769a0

    Article  ADS  Google Scholar 

  4. Ashkin, A., & Dziedzic, J. M. (1987). Optical trapping and manipulation of viruses and bacteria. Science, 235, 1517. https://doi.org/10.1126/science.3547653

    Article  ADS  Google Scholar 

  5. Urban, A. S., et al. (2014). Optical trapping and manipulation of Plasmonic nanoparticles: Fundamentals, applications, and perspectives. Nanoscale, 6, 4458–4474. https://doi.org/10.1039/C3NR06617G

    Article  ADS  Google Scholar 

  6. Wright, W. H., Sonek, G. J., & Berns, M. W. (1993). Radiation trapping forces on microspheres with optical tweezers. Applied Physics Letters, 63, 715–717. https://doi.org/10.1063/1.109937

    Article  ADS  Google Scholar 

  7. Preece, D., et al. (2011). Optical tweezers: Wideband microrheology. Journal of Optics, 13, 044022.

    ADS  Google Scholar 

  8. He, H., Heckenberg, N., & Rubinsztein-Dunlop, H. (1995). Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms. Journal of Modern Optics, 42, 217–223.

    ADS  Google Scholar 

  9. Grigorenko, A. N., Roberts, N. W., Dickinson, M. R., & Zhang, Y. (2008). Nanometric optical tweezers based on nanostructured substrates. Nature Photonics, 2, 365–370. https://doi.org/10.1038/nphoton.2008.78

    Article  ADS  Google Scholar 

  10. Juan, M. L., Righini, M., & Quidant, R. (2011). Plasmon nano-optical tweezers. Nature Photonics, 5, 349–356. https://doi.org/10.1038/nphoton.2011.56

    Article  ADS  Google Scholar 

  11. Wang, K., Schonbrun, E., Steinvurzel, P., & Crozier, K. B. (2011). Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nature Communications, 2, 469. https://doi.org/10.1038/ncomms1480

    Article  ADS  Google Scholar 

  12. Yoo, D., et al. (2018). Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap. Nano Letters, 18, 3637–3642.

    ADS  Google Scholar 

  13. Righini, M., Zelenina, A. S., Girard, C., & Quidant, R. (2007). Parallel and selective trapping in a patterned Plasmonic landscape. Nature Physics, 3, 477–480.

    ADS  Google Scholar 

  14. Roxworthy, B. J., et al. (2012). Application of plasmonic bowtie Nanoantenna arrays for optical trapping, stacking, and sorting. Nano Letters, 12, 796–801.

    ADS  Google Scholar 

  15. Berthelot, J., et al. (2014). Three-dimensional manipulation with scanning near-field optical Nanotweezers. Nature Nanotechnology, 9, 295–299.

    ADS  Google Scholar 

  16. Kotsifaki, D. G., Kandyla, M., & Lagoudakis, P. G. (2015). Near-field enhanced optical tweezers utilizing femtosecond-laser nanostructured substrates. Applied Physics Letters, 107, 211111.

    ADS  Google Scholar 

  17. Mundoor, H., et al. (2018). Tuning and switching a Plasmonic quantum dot “Sandwich” in a Nematic line defect. ACS Nano, 12, 2580–2590.

    Google Scholar 

  18. Huft, P. R., Kolbow, J. D., Thweatt, J. T., & Lindquist, N. C. (2017). Holographic Plasmonic Nanotweezers for dynamic trapping and manipulation. Nano Letters, 17, 7920–7925.

    ADS  Google Scholar 

  19. Kotsifaki, D. G., Kandyla, M., & Lagoudakis, P. G. (2016). Plasmon enhanced optical tweezers with gold-coated black silicon. Scientific Reports, 6, 26275. https://doi.org/10.1038/srep26275

    Article  ADS  Google Scholar 

  20. Vigolo, D., Rusconi, R., Stone, H. A., & Piazza, R. (2010). Thermophoresis: Microfluidics characterization and separation. Soft Matter, 6, 3489–3493.

    ADS  Google Scholar 

  21. Kim, J.-D., & Lee, Y.-G. (2016). Graphene-based Plasmonic tweezers. Carbon, 103, 281–290.

    Google Scholar 

  22. Zhang, J., Liu, W., Zhu, Z., Yuan, X., & Qin, S. (2016). Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light. Scientific Reports, 6, 1–7.

    Google Scholar 

  23. Jiang, Q., Rogez, B., Claude, J.-B., Baffou, G., & Wenger, J. (2019). Temperature measurement in plasmonic nanoapertures used for optical trapping. ACS Photonics, 6, 1763–1773.

    Google Scholar 

  24. Jones, S., Andrén, D., Karpinski, P., & Käll, M. (2018). Photothermal heating of plasmonic nanoantennas: Influence on trapped particle dynamics and colloid distribution. ACS Photonics, 5, 2878–2887. https://doi.org/10.1021/acsphotonics.8b00231

    Article  Google Scholar 

  25. Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F., & Quidant, R. (2009). Self-induced Back-action optical trapping of dielectric nanoparticles. Nature Physics, 5, 915–919.

    ADS  Google Scholar 

  26. Righini, M., et al. (2009). Nano-optical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas. Nano Letters, 9, 3387–3391.

    ADS  Google Scholar 

  27. Kotnala, A., Kollipara, P. S., Li, J., & Zheng, Y. (2019). Overcoming diffusion-limited trapping in Nanoaperture tweezers using opto-thermal-induced flow. Nano Letters, 20, 768–779.

    ADS  Google Scholar 

  28. Lin, L., et al. (2018). Opto-thermoelectric Nanotweezers. Nature Photonics, 12, 195–201. https://doi.org/10.1038/s41566-018-0134-3

    Article  ADS  Google Scholar 

  29. Braun, M., Bregulla, A. P., Günther, K., Mertig, M., & Cichos, F. (2015). Single molecules trapped by dynamic inhomogeneous temperature fields. Nano Letters, 15, 5499–5505.

    ADS  Google Scholar 

  30. Lin, L., Hill, E. H., Peng, X., & Zheng, Y. (2018). Optothermal manipulations of colloidal particles and living cells. Accounts of Chemical Research, 51, 1465–1474. https://doi.org/10.1021/acs.accounts.8b00102

    Article  Google Scholar 

  31. Chen, Z., Kollipara, P. S., Ding, H., Pughazhendi, A., & Zheng, Y. (2021). Liquid Optothermoelectrics: Fundamentals and applications. Langmuir, 37, 1315–1336.

    Google Scholar 

  32. Chen, J., et al. (2020). Thermal Optofluidics: Principles and applications. Advanced Optical Materials, 8, 1900829. https://doi.org/10.1002/adom.201900829

    Article  Google Scholar 

  33. Ndukaife, J. C., et al. (2016). Long-range and rapid transport of individual nano-objects by a hybrid Electrothermoplasmonic nanotweezer. Nature Nanotechnology, 11, 53–59. https://doi.org/10.1038/nnano.2015.248

    Article  ADS  Google Scholar 

  34. Jauffred, L., Samadi, A., Klingberg, H., Bendix, P. M., & Oddershede, L. B. (2019). Plasmonic heating of nanostructures. Chemical Reviews, 119, 8087–8130.

    Google Scholar 

  35. Baffou, G., Quidant, R., & García de Abajo, F. J. (2010). Nanoscale control of optical heating in complex Plasmonic systems. ACS Nano, 4, 709–716.

    Google Scholar 

  36. Quinten, M. (2010). Optical properties of nanoparticle systems: Mie and beyond. Wiley.

    Google Scholar 

  37. Parsons, J., Burrows, C., Sambles, J., & Barnes, W. (2010). A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures. Journal of Modern Optics, 57, 356–365.

    MATH  ADS  Google Scholar 

  38. Kang, Z., et al. (2015). Trapping and assembling of particles and live cells on large-scale random gold nano-Island substrates. Scientific Reports, 5, 9978. https://doi.org/10.1038/srep09978

    Article  Google Scholar 

  39. Liu, Y., et al. (2018). Nanoradiator-mediated deterministic opto-thermoelectric manipulation. ACS Nano, 12, 10383–10392.

    Google Scholar 

  40. Ndukaife, J. C., et al. (2018). High-resolution large-ensemble nanoparticle trapping with multifunctional thermoplasmonic nanohole metasurface. ACS Nano, 12, 5376–5384. https://doi.org/10.1021/acsnano.8b00318

    Article  Google Scholar 

  41. Lin, L., et al. (2018). Optothermoplasmonic nanolithography for on-demand patterning of 2d materials. Advanced Functional Materials, 28, 1803990. https://doi.org/10.1002/adfm.201803990

    Article  Google Scholar 

  42. Sun, H., Yu, M., Wang, G., Sun, X., & Lian, J. (2012). Temperature-dependent morphology evolution and surface plasmon absorption of ultrathin Gold Island films. The Journal of Physical Chemistry C, 116, 9000–9008.

    Google Scholar 

  43. Hong, C., Yang, S., & Ndukaife, J. C. (2020). Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Nature Nanotechnology, 15, 908–913. https://doi.org/10.1038/s41565-020-0760-z

    Article  ADS  Google Scholar 

  44. Ebbesen, T. W., Lezec, H. J., Ghaemi, H., Thio, T., & Wolff, P. A. (1998). Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667–669.

    ADS  Google Scholar 

  45. Popov, E., Neviere, M., Enoch, S., & Reinisch, R. (2000). Theory of light transmission through subwavelength periodic hole arrays. Physical Review B, 62, 16100.

    ADS  Google Scholar 

  46. Lin, L., et al. (2017). Thermophoretic tweezers for low-power and versatile manipulation of biological cells. ACS Nano, 11, 3147–3154.

    Google Scholar 

  47. Eslahian, K. A., Majee, A., Maskos, M., & Würger, A. (2014). Specific salt effects on thermophoresis of charged colloids. Soft Matter, 10, 1931–1936. https://doi.org/10.1039/C3SM52779D

    Article  ADS  Google Scholar 

  48. Parola, A., & Piazza, R. (2004). Particle thermophoresis in liquids. The European Physical Journal E, 15, 255–263. https://doi.org/10.1140/epje/i2004-10065-5

    Article  ADS  Google Scholar 

  49. Piazza, R., & Guarino, A. (2002). Soret effect in interacting micellar solutions. Physical Review Letters, 88, 208302. https://doi.org/10.1103/PhysRevLett.88.208302

    Article  ADS  Google Scholar 

  50. Braibanti, M., Vigolo, D., & Piazza, R. (2008). Does Thermophoretic mobility depend on particle size? Physical Review Letters, 100, 108303.

    ADS  Google Scholar 

  51. Wiegand, S. (2004). Thermal diffusion in liquid mixtures and polymer solutions. Journal of Physics: Condensed Matter, 16, R357.

    ADS  Google Scholar 

  52. Duhr, S., Arduini, S., & Braun, D. (2004). Thermophoresis of DNA determined by microfluidic fluorescence. The European Physical Journal E, 15, 277–286.

    ADS  Google Scholar 

  53. Braun, M., & Cichos, F. (2013). Optically controlled Thermophoretic trapping of single nano-objects. ACS Nano, 7, 11200–11208. https://doi.org/10.1021/nn404980k

    Article  Google Scholar 

  54. Fränzl, M., et al. (2019). Thermophoretic trap for single amyloid fibril and protein aggregation studies. Nature Methods, 16, 611–614.

    Google Scholar 

  55. Lin, L., et al. (2017). Interfacial-entropy-driven thermophoretic tweezers. Lab on a Chip, 17, 3061–3070.

    Google Scholar 

  56. Putnam, S. A., Cahill, D. G., & Wong, G. C. (2007). Temperature dependence of Thermodiffusion in aqueous suspensions of charged nanoparticles. Langmuir, 23, 9221–9228.

    Google Scholar 

  57. Hill, E. H., Li, J., Lin, L., Liu, Y., & Zheng, Y. (2018). Opto-thermophoretic attraction, trapping, and dynamic manipulation of lipid vesicles. Langmuir, 34, 13252–13262.

    Google Scholar 

  58. Peng, X., et al. (2018). Optothermophoretic manipulation of colloidal particles in nonionic liquids. The Journal of Physical Chemistry C, 122, 24226–24234. https://doi.org/10.1021/acs.jpcc.8b03828

    Article  Google Scholar 

  59. Majee, A., & Würger, A. (2013). Thermocharge of a hot spot in an electrolyte solution. Soft Matter, 9, 2145–2153.

    ADS  Google Scholar 

  60. Reichl, M., Herzog, M., Götz, A., & Braun, D. (2014). Why charged molecules move across a temperature gradient: The role of Electric fields. Physical Review Letters, 112, 198101. https://doi.org/10.1103/PhysRevLett.112.198101

    Article  ADS  Google Scholar 

  61. Würger, A. (2010). Thermal non-equilibrium transport in colloids. Reports on Progress in Physics, 73, 126601.

    ADS  Google Scholar 

  62. Ruckenstein, E. (1981). Can phoretic motions be treated as interfacial tension gradient driven phenomena? Journal of Colloid and Interface Science, 83, 77–81.

    ADS  Google Scholar 

  63. Bregulla, A. P., Würger, A., Günther, K., Mertig, M., & Cichos, F. (2016). Thermo-osmotic flow in thin films. Physical Review Letters, 116, 188303. https://doi.org/10.1103/PhysRevLett.116.188303

    Article  ADS  Google Scholar 

  64. Würger, A. (2008). Transport in charged colloids driven by thermoelectricity. Physical Review Letters, 101, 108302. https://doi.org/10.1103/PhysRevLett.101.108302

    Article  ADS  Google Scholar 

  65. Würger, A. (2009). Temperature dependence of the soret motion in colloids. Langmuir, 25, 6696–6701.

    Google Scholar 

  66. Sehnem, A., et al. (2015). Temperature dependence of the soret coefficient of ionic colloids. Physical Review E, 92, 042311.

    ADS  Google Scholar 

  67. Morthomas, J., & Würger, A. (2008). Thermoelectric effect on charged colloids in the Hückel limit. The European Physical Journal E, 27, 425–434.

    ADS  Google Scholar 

  68. Majee, A., & Würger, A. (2011). Collective Thermoelectrophoresis of charged colloids. Physical Review E, 83, 061403.

    ADS  Google Scholar 

  69. Lüsebrink, D., & Ripoll, M. (2012). Collective thermodiffusion of colloidal suspensions. The Journal of Chemical Physics, 137, 194904.

    ADS  Google Scholar 

  70. Vigolo, D., Buzzaccaro, S., & Piazza, R. (2010). Thermophoresis and thermoelectricity in surfactant solutions. Langmuir, 26, 7792–7801. https://doi.org/10.1021/la904588s

    Article  Google Scholar 

  71. Majee, A., & Würger, A. (2012). Charging of heated colloidal particles using the electrolyte seebeck effect. Physical Review Letters, 108, 118301. https://doi.org/10.1103/PhysRevLett.108.118301

    Article  ADS  Google Scholar 

  72. Iacopini, S., & Piazza, R. (2003). Thermophoresis in protein solutions. Europhysics Letters (EPL), 63, 247–253. https://doi.org/10.1209/epl/i2003-00520-y

    Article  ADS  Google Scholar 

  73. Ding, H., Kollipara, P. S., Lin, L., & Zheng, Y. (2020). Atomistic modeling and rational Design of Optothermal Tweezers for targeted applications. Nano Research. https://doi.org/10.1007/s12274-020-3087-z

  74. Kollipara, P. S., Lin, L., & Zheng, Y. (2019). Thermo-electro-mechanics at individual particles in complex colloidal systems. The Journal of Physical Chemistry C, 123, 21639–21644.

    Google Scholar 

  75. Kotnala, A., & Zheng, Y. (2019). Opto-Thermophoretic fiber tweezers. Nano, 8, 475–485.

    Google Scholar 

  76. Lin, L., et al. (2019). All-optical reconfigurable chiral meta-molecules. Materials Today, 25, 10–20.

    Google Scholar 

  77. Lin, L., et al. (2016). Light-directed reversible assembly of plasmonic nanoparticles using plasmon-enhanced thermophoresis. ACS Nano, 10, 9659–9668. https://doi.org/10.1021/acsnano.6b05486

    Article  Google Scholar 

  78. Lin, L., et al. (2017). Opto-thermophoretic assembly of colloidal matter. Science Advances, 3, e1700458.

    ADS  Google Scholar 

  79. Peng, X., Li, J., Lin, L., Liu, Y., & Zheng, Y. (2018). Opto-thermophoretic manipulation and construction of colloidal superstructures in photocurable hydrogels. ACS Applied Nano materials, 1, 3998–4004.

    Google Scholar 

  80. Lin, L., Peng, X., & Zheng, Y. (2017). Reconfigurable opto-thermoelectric printing of colloidal particles. Chemical Communications, 53, 7357–7360. https://doi.org/10.1039/C7CC03530F

    Article  Google Scholar 

  81. Lin, L., Kollipara, P. S., & Zheng, Y. (2019). Digital manufacturing of advanced materials: Challenges and perspective. Materials Today, 28, 49–62. https://doi.org/10.1016/j.mattod.2019.05.022

    Article  Google Scholar 

  82. Li, J., Hill, E. H., Lin, L., & Zheng, Y. (2019). Optical nanoprinting of colloidal particles and functional structures. ACS Nano, 13, 3783–3795. https://doi.org/10.1021/acsnano.9b01034

    Article  Google Scholar 

  83. Li, J., Lin, L., Inoue, Y., & Zheng, Y. (2018). Opto-Thermophoretic tweezers and assembly. Journal of Micro and Nano-Manufacturing, 6. https://doi.org/10.1115/1.4041615

  84. Pughazhendi, A., Chen, Z., Wu, Z., Li, J., & Zheng, Y. (2020). Opto-thermoelectric tweezers: Principles and applications. Frontiers in Physics, 8. https://doi.org/10.3389/fphy.2020.580014

  85. Donner, J. S., Baffou, G., McCloskey, D., & Quidant, R. (2011). Plasmon-assisted optofluidics. ACS Nano, 5, 5457–5462.

    Google Scholar 

  86. Guyon, E., Hulin, J.-P., Petit, L., & Mitescu, C. D. (2001). Physical hydrodynamics. Oxford University Press.

    MATH  Google Scholar 

  87. Liu, Y., & Poon, A. W. (2010). Flow-assisted single-beam optothermal manipulation of microparticles. Optics Express, 18, 18483–18491. https://doi.org/10.1364/OE.18.018483

    Article  ADS  Google Scholar 

  88. Chen, J., Kang, Z., Kong, S. K., & Ho, H.-P. (2015). Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles. Optics Letters, 40, 3926–3929. https://doi.org/10.1364/OL.40.003926

    Article  ADS  Google Scholar 

  89. Cong, H., et al. (2019). Target trapping and in situ single-cell genetic marker detection with a focused optical beam. Biosensors and Bioelectronics, 133, 236–242.

    Google Scholar 

  90. Jin, C. M., Lee, W., Kim, D., Kang, T., & Choi, I. (2018). Photothermal convection lithography for rapid and direct assembly of colloidal plasmonic nanoparticles on generic substrates. Small, 14, 1803055. https://doi.org/10.1002/smll.201803055

    Article  Google Scholar 

  91. Scriven, L., & Sternling, C. (1960). The Marangoni effects. Nature, 187, 186–188.

    ADS  Google Scholar 

  92. Li, X., et al. (2019). Plasmonic bubble nucleation and growth in water: Effect of dissolved air. The Journal of Physical Chemistry C, 123, 23586–23593. https://doi.org/10.1021/acs.jpcc.9b05374

    Article  Google Scholar 

  93. Wang, Y., et al. (2018). Giant and explosive Plasmonic bubbles by delayed nucleation. Proceedings of the National Academy of Sciences, 115, 7676–7681. https://doi.org/10.1073/pnas.1805912115

    Article  ADS  Google Scholar 

  94. Girot, A., et al. (2016). Motion of optically heated spheres at the water–Air interface. Langmuir, 32, 2687–2697.

    Google Scholar 

  95. Zhao, C., et al. (2014). Theory and experiment on particle trapping and manipulation via Optothermally generated bubbles. Lab on a Chip, 14, 384–391. https://doi.org/10.1039/C3LC50748C

    Article  Google Scholar 

  96. Kim, Y., Ding, H., & Zheng, Y. (2020). Enhancing surface capture and sensing of proteins with low-power Optothermal bubbles in a biphasic liquid. Nano Letters, 20, 7020–7027. https://doi.org/10.1021/acs.nanolett.0c01969

    Article  ADS  Google Scholar 

  97. Miniewicz, A., Quintard, C., Orlikowska, H., & Bartkiewicz, S. (2017). On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism. Physical Chemistry Chemical Physics, 19, 18695–18703.

    Google Scholar 

  98. Rajeeva, B. B., et al. (2019). Accumulation-driven unified spatiotemporal synthesis and structuring of immiscible metallic nanoalloys. Matter, 1, 1606–1617. https://doi.org/10.1016/j.matt.2019.10.017

    Article  Google Scholar 

  99. Bangalore Rajeeva, B., et al. (2017). High-resolution bubble printing of quantum dots. ACS Applied Materials & Interfaces, 9, 16725–16733. https://doi.org/10.1021/acsami.7b04881

    Article  Google Scholar 

  100. Rajeeva, B. B., et al. (2017). Patterning and fluorescence tuning of quantum dots with haptic-interfaced bubble printing. Journal of Materials Chemistry C, 5, 5693–5699. https://doi.org/10.1039/C7TC00454K

    Article  Google Scholar 

  101. Rajeeva, B. B., et al. (2018). “Point-and-shoot” synthesis of metallic ring arrays and surface-enhanced optical spectroscopy. Advanced Optical Materials, 6, 1701213. https://doi.org/10.1002/adom.201701213

    Article  Google Scholar 

  102. Lin, L., et al. (2016). Bubble-pen lithography. Nano Letters, 16, 701–708. https://doi.org/10.1021/acs.nanolett.5b04524

    Article  ADS  Google Scholar 

  103. Hu, W., Fan, Q., & Ohta, A. T. (2013). An opto-thermocapillary cell micromanipulator. Lab on a Chip, 13, 2285–2291. https://doi.org/10.1039/C3LC50389E

    Article  Google Scholar 

  104. Chikazawa, J.-I., Uwada, T., Furube, A., & Hashimoto, S. (2019). Flow-induced transport via optical heating of a single gold nanoparticle. The Journal of Physical Chemistry C, 123, 4512–4522. https://doi.org/10.1021/acs.jpcc.8b11575

    Article  Google Scholar 

  105. Dai, L., Ge, Z., Jiao, N., & Liu, L. (2019). 2d to 3d manipulation and assembly of microstructures using Optothermally generated surface bubble microrobots. Small, 15, 1902815. https://doi.org/10.1002/smll.201902815

    Article  Google Scholar 

  106. Stratton, J. A. (2007). Electromagnetic theory (Vol. 33). Wiley.

    MATH  Google Scholar 

  107. Melcher, J., & Electric, R. (1974). Fields and moving media. IEEE Transactions on Education, 17, 100–110.

    ADS  Google Scholar 

  108. Roxworthy, B. J., Bhuiya, A. M., Vanka, S. P., & Toussaint, K. C. (2014). Understanding and controlling Plasmon-induced convection. Nature Communications, 5, 3173. https://doi.org/10.1038/ncomms4173

    Article  ADS  Google Scholar 

  109. Squires, T. M., & Bazant, M. Z. (2004). Induced-charge electro-osmosis. Journal of Fluid Mechanics, 509, 217–252.

    MathSciNet  MATH  ADS  Google Scholar 

  110. Li, J., et al. (2021). Tunable chiral optics in all-solid-phase reconfigurable dielectric nanostructures. Nano Letters, 21, 973–979. https://doi.org/10.1021/acs.nanolett.0c03957

    Article  ADS  Google Scholar 

  111. Li, J., et al. (2019). Optical nanomanipulation on solid substrates via optothermally-gated photon nudging. Nature Communications, 10, 5672. https://doi.org/10.1038/s41467-019-13676-3

    Article  ADS  Google Scholar 

  112. Kotnala, A., & Zheng, Y. (2019). Digital assembly of colloidal particles for nanoscale manufacturing. Particle & Particle Systems Characterization, 36, 1900152. https://doi.org/10.1002/ppsc.201900152

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports of the National Science Foundation (NSF-CMMI-1761743; NSF-ECCS-2001650), the National Aeronautics and Space Administration (80NSSC17K0520), and the National Institute of General Medical Sciences of the National Institutes of Health (DP2GM128446).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuebing Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Z., Li, J., Zheng, Y. (2022). Plasmon-Enhanced Optothermal Manipulation. In: Yu, P., Xu, H., Wang, Z.M. (eds) Plasmon-enhanced light-matter interactions. Lecture Notes in Nanoscale Science and Technology, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-87544-2_10

Download citation

Publish with us

Policies and ethics