Skip to main content

Abstract

This chapter focuses on the concept development, starting with the definition of requirements and presentation of the general concept structure (Sect. 4.1). The main part of this chapter is the modeling of input and output flows as well as the interactions within machining systems (Sect. 4.2). Based on these models technological, environmental and economic indicators are derived (Sect. 4.3) and integrated improvement measures are presented (Sect. 4.4). Finally, the presented concept is implemented within a prototypical software tool and the application cycle is presented (Sect. 4.5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The piping system does not show accurate dimensioning.

References

  • Archard JF (1961) Single contacts and multiple encounters. J Appl Phys 32:1420–1425. https://doi.org/10.1063/1.1728372

    Article  Google Scholar 

  • Astakhov VP, Godlevskiy V (2012) Delivery of metalworking fluids in the machining zone. In: Astakhov VP, Joksch S (eds) Metalworking fluids for cutting and grinding: fundamentals and recent advances. Woodhead Publishing, Cambridge, UK, Philadephia, USA

    Google Scholar 

  • Boothroyd G, Knight WA (2006) Fundamentals of machining and machine tools, 3rd edn. Mechanical engineering, vol 69. CRC Taylor & Francis, Boca Raton, USA

    Google Scholar 

  • Brücher T (1996) Kühlschmierung beim Schleifen keramischer Werkstoffe. Dr.- Ing. Dissertation, TU Berlin. IPK, Berlin, Germany

    Google Scholar 

  • Byers JP (2006) Metalworking fluids, 2nd edn. CRC Press, Hoboken, USA

    Google Scholar 

  • Dahmus JB, Gutowski TG (2004) An environmental analysis of machining. Proc ASME Int Mech Eng Congress and r&d Expos 643–652. https://doi.org/10.1115/IMECE2004-62600

  • Degner W, Lutze H, Smejkal E (2015) Spanende formung: theorie, Berechnung, Richtwerte, 17th edn. Hanser, München, Germany

    Book  Google Scholar 

  • Denkena B, Tönshoff HK (2011) Spanen. Springer, Berlin, Heidelberg, Germany

    Book  Google Scholar 

  • Denkena B, Helmecke P, Hülsemeyer L (2014) Energy efficient machining with optimized coolant Lubrication flow rates. In: 5th Machining innovations conference, vol 24, pp 25–31. https://doi.org/10.1016/j.procir.2014.07.140

  • Dettmer T (2006) Nichtwassermischbare Kühlschmierstoffe auf Basis nachwachsender Rohstoffe. Dr.-Ing. Dissertation, Technische Universität Braunschweig. Vulkan Verlag, Essen, Germany

    Google Scholar 

  • Dietrich J (2016) Praxis der Zerspantechnik. Springer, Wiesbaden, Germany

    Google Scholar 

  • DIN CLC, TS 60034-31 (2011) Drehende elektrische Maschinen - Auswahl von Energiesparmotoren einschließlich Drehzahlstellantrieben. Beuth Verlag GmbH, Berlin, Germany, DIN

    Google Scholar 

  • DIN EN 14511-1 (2019) Luftkonditionierer, Flüssigkeitskühlsätze und Wärmepumpen für die Raumbeheizung und -kühlung und Prozess-Kühler mit elektrisch angetriebenen Verdichtern. DIN, Beuth Verlag GmbH, Berlin, Germany

    Google Scholar 

  • En DIN, 16798-3 (2017) Energetische Bewertung von Gebäuden - Lüftung von Gebäuden. Beuth Verlag GmbH, Berlin, Germany, DIN

    Google Scholar 

  • En DIN, 60034-30-1 (2014) Drehende elektrische Maschinen - Wirkungsgrad-Klassifizierung von netzgespeisten Drehstrommotoren. Beuth Verlag GmbH, Berlin, Germany, DIN

    Google Scholar 

  • En DIN, ISO 4287 (2010) Geometrische Produktspezifikation (GPS) – Oberflächenbeschaffenheit: Tastschnittverfahren - Benennungen. DIN, Beuth Verlag GmbH, Berlin, Germany, Definitionen und Kenngrößen der Oberflächenbeschaffenheit

    Google Scholar 

  • Eisele C (2014) Simulationsgestützte Optimierung des elektrischen Energiebedarfs spanender Werkzeugmaschinen. Dr.-Ing. Dissertation, TU Darmstadt. Shaker Verlag, Aachen, Germany

    Google Scholar 

  • Fanuc GE (2008) The Environmental and Economic Advantages of Energy-Efficient Motors

    Google Scholar 

  • Guo C, Malkin S (2000) Energy partition and cooling during grinding. J Manuf Process 2:151–157

    Article  Google Scholar 

  • Hecker RL, Liang SY (2003) Predictive modeling of surface roughness in grinding. Int J Mach Tools Manuf 43:755–761. https://doi.org/10.1016/S0890-6955(03)00055-5

    Article  Google Scholar 

  • Herrmann C (2010) Ganzheitliches Life Cycle Management - Nachhaltigkeit und Lebenszyklusorientierung in Unternehmen. Springer Verlag, Berlin, Germany, VDI-Buch

    Book  Google Scholar 

  • Herrmann C, Thiede S, Zein A, Ihlenfeldt S, Blau P (2009) Energy efficiency of machine tools: extending the perspective. In: 42th CIRP conference on manufacturing systems, Grenoble, France

    Google Scholar 

  • Herrmann C, Madanchi N, Winter M, Öhlschläger G, Greßmann A, Zettl E, Schwengers K, Lange U (2017) Ökologische und ökonomische Bewertung des Ressourcenaufwands - Wassermischbare Kühlschmierstoffe. Technical Report, VDI Zentrum Ressourceneffizienz GmbH (VDI ZRE)

    Google Scholar 

  • Jin K, Zhang HC, Balasubramaniam P, Nage S (2009) A multiple objective optimization model for environmental benign process planning. In: 16th international conference on industrial engineering and engineering management, pp 869–873. https://doi.org/10.1109/ICIEEM.2009.5344194

  • Johansson D, Hägglund S, Bushlya V, Ståhl J-E (2017) Assessment of commonly used tool life models in metal cutting. In: 27th international conference on flexible automation and intelligent manufacturing, Modena, Italy, vol 11, pp 602–609. https://doi.org/10.1016/j.promfg.2017.07.154

  • Khare SK, Agarwal S (2015) Predictive modeling of surface roughness in grinding. In: 15th CIRP conference on modelling of machining operations, vol 31, pp 375–380. Karlsruhe, Germany. https://doi.org/10.1016/j.procir.2015.04.092

  • Kiechle A (1996) Kostenanalyse beim Einsatz von Kühlschmierstoffen. Mineralöltechnik No. 10, Stuttgart, Germany

    Google Scholar 

  • Kienzle O (1952) Die Bestimmung von Kräften und Leistungen an spanenden Werkzeugen und Werkzeugmaschinen. VDI-Z:299–305

    Google Scholar 

  • Kleppmann W (2011) Versuchsplanung: Produkte und Prozesse optimieren, 7th edn. Praxisreihe Qualitätswissen. Hanser, München, Germany

    Google Scholar 

  • Klocke F (2011) Manufacturing processes 1: Cutting. Springer Verlag, Berlin, Heidelberg, Germany

    Book  Google Scholar 

  • Kloke U (2003) Auslegung von Bauteilreinigungsanlagen mit Hilfe eines Fachinformationssystems. Dr.-Ing. Dissertation, TU Dortmund. Maschinenelemente Verlag, Dortmund, Germany

    Google Scholar 

  • Knobloch H (1979) Kühlschmierstoffpflege in der Praxis. Lexika Verlag, Grafenau, Württ, Germany

    Google Scholar 

  • König W, Essel K (1982) Spezifische Schnittkraftwerte für die Zerspanung metallischer Werkstoffe. Verlag Stahleisen, Düsseldorf, Germany

    Google Scholar 

  • Kronenberg M (1969) Grundzüge der Zerspanungslehre. Springer Verlag, Berlin, Heidelberg, Germany

    Book  Google Scholar 

  • Kuhrke B (2011) Methode zur Energie- und Medienbedarfsbewertung spanender Werkzeugmaschinen. Dr.-Ing. Dissertation, TU Darmstadt. epubli, Berlin, Germany

    Google Scholar 

  • Kuram E, Ozcelik B, Bayramoglu M, Demirbas E, Simsek E (2013) Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments. J Clean Prod 42:159–166. https://doi.org/10.1016/j.jclepro.2012.11.003

    Article  Google Scholar 

  • Li C, Chen X, Tang Y, Li L (2017) Selection of optimum parameters in multi-pass face milling for maximum energy efficiency and minimum production cost. J Clean Prod 140:1805–1818. https://doi.org/10.1016/j.jclepro.2016.07.086

    Article  Google Scholar 

  • Madanchi N, Winter M, Herrmann C (2015a) Cutting fluid drag-out and exhaust air in grinding processes: influence on the eco-efficiency. In: 22th CIRP international conference on life cycle engineering, vol 29, pp 329–334, Sydney, Australia. https://doi.org/10.1016/j.procir.2015.02.054

  • Madanchi N, Kurle D, Winter M, Thiede S, Herrmann C (2015b) Energy efficient process chain: the impact of cutting fluid strategies. In: 22th CIRP international conference on life cycle engineering, vol 29, pp 360–365, Sydney, Australia. https://doi.org/10.1016/j.procir.2015.02.056

  • Madanchi N, Winter M, Thiede S, Herrmann C (2017) Energy efficient cutting fluid supply: the impact of nozzle design. In: 24th CIRP international conference on life cycle engineering, vol 61, pp 564–569, Kamakura, Japan. https://doi.org/10.1016/j.procir.2016.11.192

  • Madanchi N, Leiden A, Winter M, Asbach C, Lindermann J, Herrmann C, Thiede S (2019a) Cutting fluid emissions in grinding processes: influence of process parameters on particle size and mass concentration. Int J Adv Manuf Technol 101:773–783. https://doi.org/10.1007/s00170-018-2934-5

    Article  Google Scholar 

  • Madanchi N, Thiede S, Gutowski TG, Herrmann C (2019b) Modeling the impact of cutting fluid strategies on environmentally conscious machining systems. In: 26th CIRP international conference on life cycle engineering, vol 80, pp 150–155, West Lafayette, USA. https://doi.org/10.1016/j.procir.2019.01.068

  • Malkin S, Guo C (2008) Grinding technology: theory and applications of machining with abrasives, 2nd edn. Industrial Press, New York, USA

    Google Scholar 

  • Mang T, Dresel W (2007) Lubricants and lubrication. Wiley-VCH Verlag, Weinheim, Germany

    Google Scholar 

  • Marinescu ID, Hitchiner MP, Uhlmann E, Rowe WB, Inasaki I (2007) Handbook of machining with grinding wheels. CRC Press Taylor & Francis Group, Boca Raton, USA

    Google Scholar 

  • Mativenga PT, Rajemi MF (2011) Calculation of optimum cutting parameters based on minimum energy footprint. CIRP Ann 60:149–152. https://doi.org/10.1016/j.cirp.2011.03.088

    Article  Google Scholar 

  • Meister M (2011) Vademecum des Schleifens. Hanser, München, Germany

    Google Scholar 

  • Metzger JL (1986) Superabrasive grinding. Butterworths, London, UK

    Google Scholar 

  • Morgan MN, Jackson AR, Wu H, Baines-Jones V, Batako A, Rowe WB (2008) Optimisation of fluid application in grinding. CIRP Ann 57:363–366. https://doi.org/10.1016/j.cirp.2008.03.090

    Article  Google Scholar 

  • Nalbant M, Gökkaya H, Sur G (2007) Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Mater Des 28:1379–1385. https://doi.org/10.1016/j.matdes.2006.01.008

    Article  Google Scholar 

  • Petuelli G (ed) (2002) Simulation des Kühlschmierstoffkreislaufs zur Optimierung einer umwelt- und ressourcenschonenden Produktionstechnik. DBU Forschungsbericht, FZ 13581. Shaker, Aachen, Germany

    Google Scholar 

  • Pfleiderer C (1961) Die Kreiselpumpen für Flüssigkeiten und Gase. Springer, Berlin, Heidelberg, Germany

    Book  Google Scholar 

  • Priarone PC, Robiglio M, Settineri L, Tebaldo V (2016) Modelling of specific energy requirements in machining as a function of tool and lubricoolant usage. CIRP Ann 65:25–28. https://doi.org/10.1016/j.cirp.2016.04.108

    Article  Google Scholar 

  • Pusavec F, Kramar D, Krajnik P, Kopac J (2010) Transitioning to sustainable production—part II: evaluation of sustainable machining technologies. J Clean Prod 18:1211–1221. https://doi.org/10.1016/j.jclepro.2010.01.015

    Article  Google Scholar 

  • Rief M (2012) Vorhersagemodell für den Energiebedarf bei der spanenden Bearbeitung für eine energieeffiziente Prozessgestaltung. Dr.-Ing. Dissertation, Universität Magdeburg. Shaker, Aachen, Germany

    Google Scholar 

  • Riegert W, Mager K (2001) Entwicklung einer Kleinzentrifuge zur dezentralen Trocknung von mit Kühlschmierstoffen behafteten Spänen. Abschlußbericht ARP, Alpirsbach-Peterzell, Germany

    Google Scholar 

  • Rowe WB (2009) Principles of modern grinding technology. William Andrew, Oxford, UK

    Google Scholar 

  • Sanchez LEdA, Palma GL, Marinescu I, Modolo DL, Nalon LJ, Santos AE (2013) Effect of different methods of cutting fluid application on turning of a difficult-to-machine steel (SAE EV-8). Proc Inst Mech Eng, Part b: J Eng Manuf 227:220–234. https://doi.org/10.1177/0954405412467589

    Article  Google Scholar 

  • Sangermann H (2013) Hochdruck-Kühlschmierstoffzufuhr in der Zerspanung. Dr.- Ing. Dissertation, RWTH Aachen. Apprimus Verlag, Aachen, Germany

    Google Scholar 

  • Sangwan KS, Sihag N (2019) Multi-objective optimization for energy efficient machining with high productivity and quality for a turning process. In: 26th CIRP international conference on life cycle engineering, vol 80, pp 67–72, West Lafayette, USA. https://doi.org/10.1016/j.procir.2019.01.022

  • Schlosser R (2013) Methodik zur Prognose der Nachhaltigkeit des Energie- und Stoffeinsatzes spanender Fertigungsprozesse. Dr.-Ing. Dissertation, RWTH Aachen. Apprimus Verlag, Aachen, Germany

    Google Scholar 

  • Schönherr H (2002) Spanende Fertigung. Oldenbourg, München, Germany

    Google Scholar 

  • Schrems S (2014) Methode zur modellbasierten Integration des maschinenbezogenen Energiebedarfs in die Produktionsplanung. Dr.-Ing. Dissertation, TU Darmstadt. Shaker Verlag, Aachen, Germany

    Google Scholar 

  • Sigloch H (2008) Technische Fluidmechanik, 6th edn. Springer Verlag, Berlin, Heidelberg, Germany

    MATH  Google Scholar 

  • Songmene V, Zaghbani I, Kientzy G (2018) Machining and machinability of tool steels: effects of lubrication and machining conditions on tool wear and tool life data. In: 8th CIRP conference on high performance cutting, vol 77, pp 505–508. https://doi.org/10.1016/j.procir.2018.08.252

  • Ståhl J-E, Schultheiss F, Hägglund S (2011) Analytical and experimental determination of the ra surface roughness during turning. In: 1st CIRP conference on surface integrity, procedia engineering, vol 19, pp 349–356. https://doi.org/10.1016/j.proeng.2011.11.124

  • Su H, Yang C, Gao S, Fu Y, Ding W (2019) A predictive model on surface roughness during internal traverse grinding of small holes. Int J Adv Manuf Technol 103:2069–2077. https://doi.org/10.1007/s00170-019-03643-z

    Article  Google Scholar 

  • Tornau D, Bradke H-J, Rahe W, Schühly H-P (1999) Kühlschmierstoffe und Anlagen: Theorie und Praxis. Kontakt & Studium, vol 579. expert verlag, Renningen-Malmsheim, Germany

    Google Scholar 

  • Torrance AA, Badger JA (2000) The relation between the traverse dressing of vitrified grinding wheels and their performance. Int J Mach Tools Manuf 40:1787–1811. https://doi.org/10.1016/S0890-6955(00)00015-8

    Article  Google Scholar 

  • Triebs JB (2015) Analyse, Optimierung und Simulation des Energieumsatzes dezentraler Fluidkreisläufe von Werkzeugmaschinen. Dr.-Ing. Dissertation, RWTH Aachen. Apprimus Verlag, Aachen, Germany

    Google Scholar 

  • Triesch J (2010) Reinigung von Kühlschmierstoffen: Konzepte, Methoden und Hinweise für den Praktiker, 1st edn. expert verlag, Renningen, Germany

    Google Scholar 

  • VDI 2055 (2019) Thermal insulation of heated and refrigerated operational installations. Verein Deutscher Ingenieure, Berlin, Germany

    Google Scholar 

  • VDI 2089 (2010) Building services in swimming baths indoor pools. Verein Deutscher Ingenieure, Berlin, Germany

    Google Scholar 

  • VDI 3035 (2008) Design of machine tools, production lines and peripheral equipment for the use of metalworking fluids. Verein Deutscher Ingenieure, Berlin, Germany

    Google Scholar 

  • VDI 3321 (1994) Schnittwertoptimierung Grundlagen und Anwendung. Verein Deutscher Ingenieure, Berlin, Germany

    Google Scholar 

  • VDI 3802-2 (2012) Air conditioning systems for factories. Verein Deutscher Ingenieure, Berlin, Germany

    Google Scholar 

  • Victor H (1969) Schnittkraftberechnungen für das Abspanen von Metallen. Wt. Zeitschrift Für Industrielle Fertigung 59:311–326

    Google Scholar 

  • Wang Q, Liu F, Wang X (2014) Multi-objective optimization of machining parameters considering energy consumption. Int J Adv Manuf Technol 71:1133–1142. https://doi.org/10.1007/s00170-013-5547-z

    Article  Google Scholar 

  • Wang R, Wang B, Barber G, Gu J, Schall J (2019) Models for prediction of surface roughness in a face milling process using triangular inserts. Lubricants 7:9. https://doi.org/10.3390/lubricants7010009

    Article  Google Scholar 

  • Wilbert H-P, Kreisel G, Goldhan G (1998) Ganzheitliche Bilanzierung/Bewertung von Reinigungs-/ Vorbehandlungstechnologien in der Oberflächenbehandlung: Forschungsbericht Ganzheitliche Bilanzierung / Fallstudien. Bundesministerium für Bildung und Forschung (BMBF)

    Google Scholar 

  • Winter M (2016) Eco-efficiency of Grinding Processes and Systems. Dr.-Ing. Dissertation, Technische Universität Braunschweig. Springer, Switzerland

    Google Scholar 

  • Winter M, Thiede S, Herrmann C (2015) Influence of the cutting fluid on process energy demand and surface roughness in grinding - a technological, environmental and economic examination. Int J Adv Manuf Technol 77:2005–2017. https://doi.org/10.1007/s00170-014-6557-1

    Article  Google Scholar 

  • Xie Y, Williams JA (1996) The prediction of friction and wear when a soft surface slides against a harder rough surface. Wear 196:21–34

    Article  Google Scholar 

  • Yan J, Li L (2013) Multi-objective optimization of milling parameters—the trade-offs between energy, production rate and cutting quality. J Clean Prod 52:462–471. https://doi.org/10.1016/j.jclepro.2013.02.030

    Article  Google Scholar 

  • Yegenoglu K (1986) Berechnung von Topographiekenngrößen zur Auslegung von CBN-Schleifprozessen. Dr.-Ing. Dissertation, RWTH Aachen, Aachen, Germany

    Google Scholar 

  • Zein A (2012) Transition towards energy efficient machine tools. Dr.-Ing. Dissertation, Technische Universität Braunschweig. Springer, Berlin, Germany

    Google Scholar 

  • Zein A, Li W, Herrmann C, Kara S (2011) Energy efficiency measures for the design and operation of machine tools: an axiomatic approach. In: 18th CIRP international conference on life cycle engineering, Braunschweig, Germany 274–279. https://doi.org/10.1007/978-3-642-19692-8_48

  • Zitt UR (1999) Modellierung und Simulation von Hochleistungsschleifprozessen. Dr.-Ing. Dissertation, Universität Kaiserslautern, Kaiserslautern, Germany

    Google Scholar 

  • Züst S, Gontarz A, Wegener K (2013) Energy equivalent of compressed air consumption in a machine tool environment. In: 11th global conference on sustainable manufacturing, pp 359–364

    Google Scholar 

  • Züst SD (2017) Model based optimization of internal heat sources in machine tools. Dr. sc. Dissertation, ETH Zurich. Zurich, Switzerland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Madanchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Madanchi, N. (2022). Concept Development. In: Model Based Approach for Energy and Resource Efficient Machining Systems. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87540-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87540-4_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87539-8

  • Online ISBN: 978-3-030-87540-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics