Skip to main content

The Future of Time

  • Chapter
  • First Online:
Stratigraphy: A Modern Synthesis
  • 1290 Accesses

Abstract

The stratigraphic record is hierarchical and three dimensional. It is composed of complex lithologic units formed over time scales ranging from seconds to hundreds of millions of years that may be defined and described on all scales from the thin-section to the basin fill. Preservation is fragmentary, yet stratigraphic order may be perceived at many levels, from the cyclicity observed in vertical profile, to the sequences mappable across and between basins. Modern work on some specific field examples is described in order to illustrate recent concepts concerning the “stratigraphy machine,” which is described and explained in this chapter. Current developments in high-resolution stratigraphy include the recognition of orbitally forced cyclicity at many levels in the Phanerozoic record, and this is facilitating the development of an astrochronology for the Cenozoic and parts of earlier systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ager, D. V., 1973, The nature of the stratigraphical record: New York, John Wiley, 114 p.

    Google Scholar 

  • Ager, D. V., 1981, The nature of the stratigraphical record (second edition): John Wiley, New York, 122 p.

    Google Scholar 

  • Ager, D., 1986, A reinterpretation of the basal ‘Littoral Lias’ of the Vale of Glamorgan, Proceedings of the Geologists Association, v. 97, p. 29-35.

    Google Scholar 

  • Ager, D. V., 1993, The new catastrophism, Cambridge University Press, 231 p.

    Google Scholar 

  • Algeo, T. J., and Wilkinson, B. H., 1988, Periodicity of mesoscale Phanerozoic sedimentary cycles and the role of Milankovitch orbital modulation: Journal of Geology, v. 96, p. 313–322.

    Google Scholar 

  • Allen, J. R. L., 1983, Studies in fluviatile sedimentation: bars, bar complexes and sandstone sheets (low-sinuosity braided streams) in the Brownstones (L. Devonian), Welsh Borders: Sedimentary Geology, v. 33, p. 237-293.

    Google Scholar 

  • Allen, P. A., 2008, Time scales of tectonic landscapes and their sediment routing systems, in Landscape Evolution: Denudation, Climate and Tectonics Over Different Time and Space Scales, edited by K. Gallagher, S. J. Jones, and J. Wainwright, Spec. Publ. Geol. Soc., 296, 7–28,

    Google Scholar 

  • Allen, P. A., and Allen, J. R., 2005, Basin analysis, principles and applications, second edition, Wiley-Blackwell, Hoboken, New Jersey, 500 p.

    Google Scholar 

  • Allen, P. A., and Densmore, A. L., 2000, Sediment flux from an uplifting fault block: processes and controls in the stratigraphic development of extensional basins: Basin Research, v. 12, p. 367–380.

    Google Scholar 

  • Amorosi A., Bohacs K.M., Bruno L., Campo B., and Drexler T.M., 2017. How close is geological thought to reality? The concept of time as revealed by the sequence stratigraphy of the late Quaternary record, in Hart, B., Rosen, N.C., West, D., D’Agostino, A., Messina, C., Hoffman, M. & Wild, R., eds., Sequence Stratigraphy: The Future Defined: 36th Annual Gulf Coast Section SEPM Foundation Perkins-Rosen Research Conference, Marathon Conference Center, Houston, December 4–5, 2017, p. 47–86.

    Google Scholar 

  • Archer, A. W., Kvale, E. P., and Johnson, H. R., 1991, Analysis of modern equatorial tidal periodicities as a test of information encoded in ancient tidal rhythmites, in Clastic tidal sedimentology: Canadian Society of Petroleum Geologists, Memoir 16, p. 189-196.

    Google Scholar 

  • Aschoff, J. L., and Steel, R. J., 2011, Anomalous clastic wedge development during the Sevier-Laramide transition, North American Cordilleran foreland basin, USA: Geological Society of America Bulletin, v. 123, p. 1822-1835.

    Google Scholar 

  • Aswasereelert, W., Mayers, S. R., Carroll, A. R., Peters, S. E., Smith, M. E., and Feigl, K. L., 2013, basin-scale cyclostratigraphy of the green River Formation, Wyoming: Geological Society of America Bulletin, v. 125, p. 216–228.

    Google Scholar 

  • Aubry, M.-P., 1991, Sequence stratigraphy: eustasy or tectonic imprint: Journal of Geophysical Research, v. 96B, p. 6641–6679.

    Google Scholar 

  • Aziz, A., Krijgsman, W., Hilgen, F. J., Wilson, D. S., and Calvo, J. P., 2003, An astronomical polarity time scale for the late middle Miocene based on cyclic continental sequences: Journal of Geophysical Research, v. 108B, doi:https://doi.org/10.1029/2002JB001818.

  • Bailey, R. J., 2009, Cyclostratigraphic reasoning and orbital time calibration: Terra Nova, v. 21, #5, p. 340–351.

    Google Scholar 

  • Bailey, R. J., 2011, Buried trees and basin tectonics: a Discussion: Stratigraphy, v. 8, p. 1–6.

    Google Scholar 

  • Bailey, R. J., and Smith, D. G., 2005, Quantitative evidence for the fractal nature of the stratigraphic record: results and implications: Proceedings of the Geologists’ Association, v. 116, p. 129–138.

    Google Scholar 

  • Bailey, R. J., and Smith, D. G., 2010, Scaling in stratigraphic data series: implications for practical stratigraphy: First Break, v. 28, p. 57–66.

    Google Scholar 

  • Bailey, R. J., and Schumer, R., 2012, The statistical properties of stratigraphic layering and their possible significance: The Geological Society, London, William Smith Meeting 2012, Strata and Time: Probing the gaps in our understanding,

    Google Scholar 

  • Barrell, Joseph, 1917, Rhythms and the measurement of geologic time: Geological Society of America Bulletin, v. 28, p. 745–904.

    Google Scholar 

  • Beaumont, C, 1981, Foreland basins: Geophysical Journal of the Royal Astronomical Society, v. 65, p. 291–329.

    Google Scholar 

  • Beckmann, B., Flögel, S., Hofmann, P., Schulz, M., and Wagner, T., 2005, Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response: Nature, v. 437, p. 241–244.

    Google Scholar 

  • Bentham, P. A., Talling, P. J., and Burbank, D. W., 1993, Braided stream and flood-plain deposition in a rapidly aggrading basin: the Escanilla formation, Spanish Pyrenees, in Best, J. L., and Bristow, C. S., eds., Braided rivers: Geological Society, London, Special Publication 75, p. 177–194.

    Google Scholar 

  • Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., eds., 1995, Geochronology, time scales and global stratigraphic correlation: Society for Sedimentary Geology Special Publication 54, 386 p.

    Google Scholar 

  • Bernard, H. A., Leblanc, R. J., and Major, C. J., 1962, Recent and Pleistocene geology of southeast Texas, in Rainwater, E. H., and Zingula, R. P., eds., Geology of the Gulf Coast and central Texas: Geological Society of America, Guidebook for 1962 Annual Meeting., p. 175–224.

    Google Scholar 

  • Betzler, C., Kroon, D., and Reijmer, J. G. J., 2000, Sychroneity of major late Neogene sea level fluctuations and paleoceanographically controlled changes as recorded by two carbonate platforms: Paleoceanography, v. 15, p. 722–730.

    Google Scholar 

  • Bhattacharya, J. P., 2011, Practical problems in the application of the sequence stratigraphic method and key surfaces: integrating observations from ancient fluvial-deltaic wedges with Quaternary and modelling studies: Sedimentology, v. 58, p. 120–169.

    Google Scholar 

  • Bhattacharya, N. P., Howell, C. D., MacEachern, J. A., and Walsh, J. P., 2020, Bioturbarion, sedimentation rates, and preservation of flood events in deltas: Palaeogeograpphy, Palaeoclimatology, Palaeoecology, v. 560, #110049. 22 p.

    Google Scholar 

  • Bhattacharya, J.P., Miall, A.D., Ferron, C., Gabriel, J., Randazzo, N., Kynaston, D., Jicha, B. R., and Singer, S., 2019, Balancing sediment budgets in deep time and the nature of the stratigraphic record: Earth-Science Reviews. v. 199, 102985, 25 p.

    Google Scholar 

  • Blair, T. C., and Bilodeau, W. L., 1988, Development of tectonic cyclothems in rift, pull-apart, and foreland basins: sedimentary response to episodic tectonism: Geology, v. 16, p. 517–520.

    Google Scholar 

  • Blum, M. D., 1993, Genesis and architecture of incised valley fill sequences: a late Quaternary example from the Colorado River, Gulf Coastal Plain of Texas, in Weimer, P., and Posamentier, H. W., eds., Siliciclastic sequence stratigraphy: Recent developments and applications: American Association of Petroleum Geologists Memoir 58, p. 259–283.

    Google Scholar 

  • Blum, M. D., and Törnqvist, T. E., 2000, Fluvial responses to climate and sea-level change: a review and look forward: Sedimentology, v. 47, p. 2–48.

    Google Scholar 

  • Boulila, S., Galbrun, B., Miller, K. G., Pekar, S. F., Browning, J. V., Laskar, J., and Wright, J. D., 2011, On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences: Earth Science Reviews, v. 109, p. 94–112.

    Google Scholar 

  • Bradley, W. H., 1929, The Varves and Climate of the Green River Epoch: U.S. Geological Survey Professional Paper 158-E, 110 p.

    Google Scholar 

  • Bridge, J. S. and Leeder, M. R., 1979, A simulation model of alluvial stratigraphy: Sedimentology, v. 26, p. 617–644.

    Google Scholar 

  • Browne, G.H., and Naish, T.R., 2003. Facies development and sequence architecture of a late Quaternary fluvial-marine transition, Canterbury Plains and shelf, New Zealand: implications for forced regressive deposits: Sedimentary Geology, v. 158(1-2), p. 57-86.

    Google Scholar 

  • Browning, J. V., Miller, K. G., Sugarman, P. J., Kominz, M. A., McLaughlin, P. P. Kulpecz, A. A., and Feigenson, M. D., 2008, 100 Myr record of sequences, sedimentary facies and sea level changes from Ocean Drilling Program onshore coreholes, US Mid-Atlantic coastal plain: Basin Research, v. 20, p. 227-248.

    Google Scholar 

  • Buckman, S. S. 1910. Certain Jurassic (‘Inferior Oolite’) species of ammonites and brachiopoda. Quarterly Journal of the Geological Society, London, v. 66, p. 90-108.

    Google Scholar 

  • Burbank, D. W., Meigs, A., and Brozovic, N., 1996, Interactions of growing folds and coeval depositional systems: Basin Research, v. 8, p. 199–223.

    Google Scholar 

  • Callomon, J. H., 1995, Time from fossils: S. S. Buckman and Jurassic high-resolution geochronology, in Le Bas, M. J., ed., Milestones in Geology: Geological Society of London Memoir 16, p. 127-150.

    Google Scholar 

  • Cant, D. J., and Stockmal, G. S., 1989, The Alberta foreland basin: relationship between stratigraphy and terrane-accretion events: Canadian Journal of Earth Sciences, v. 26, p. 1964–1975.

    Google Scholar 

  • Catuneanu, O., 2006, Principles of sequence stratigraphy: Elsevier, Amsterdam, 375 p.

    Google Scholar 

  • Christie-Blick, N., Mountain, G. S., and Miller, K. G., 1990, Seismic stratigraphy: record of sea-level change, in Revelle, R., ed., Sea-level change: National Research Council, Studies in Geophysics, Washington, National Academy Press, p. 116-140.

    Google Scholar 

  • Christie-Blick, N., Pekar, S. F., and Madof, A. S., 2007, Is there a role for sequence stratigraphy in chronostratigraphy? Stratigraphy, v. 4, p. 217-229.

    Google Scholar 

  • Cloetingh, S., 1988, Intraplate stress: a new element in basin analysis, in Kleinspehn, K., and Paola, C., eds., New Perspectives in basin analysis: Springer-Verlag, New York, p. 205–230.

    Google Scholar 

  • Cole. R.D., and Friberg, J.F., 1989, Stratigraphy and sedimentation of the Book Cliffs, Utah, in Nummedal, D. and Wright, R., eds., Cretaceous Shelf Sandstone and Shelf Depositional Sequences, Western Interior Basin, Utah, Colorado, and New Mexico: 28th International Geological Congress, Field Trip Guidebook T119.

    Google Scholar 

  • Coleman, J. M., and Gagliano, S. W., 1964, Cyclic sedimentation in the Mississippi River deltaic plain: Transactions of the Gulf Coast Association of Geological Societies, v. 14, p. 67–80.

    Google Scholar 

  • Colombera, L., Mountney, N. P., and McCaffrey, W. D., 2015, A meta-study of relationships between fluvial channel-body stacking pattern and aggradation rate: implications for sequence stratigraphy: Geology, v. 43, p. 283–286.

    Google Scholar 

  • Cramer, B. D., Vandenbroucke, T. R. A., and Ludvigson, G. A., 2015, High-resolution event stratigraphy (HiRES) and the quantification of stratigraphic uncertainty: Silurian examples of the quest for precision in stratigraphy: Earth Science Reviews, v. 141, p. 136–153.

    Google Scholar 

  • Crampton, J. S., Schiøler, P., and Roncaglia, L., 2006, Detection of Late Cretaceous eustatic signatures using quantitative biostratigraphy: Geological Society of America Bulletin, v. 118, p. 975–990.

    Google Scholar 

  • Dalrymple, R. W., 1984, Morphology and internal structure of sandwaves in the Bay of Fundy: Sedimentology, v. 31, p. 365–382.

    Google Scholar 

  • Davies, N. S., and Shillito, A. P., 2018, Incomplete but intricately detailed: The inevitable preservation of true substrates in a time-deficient stratigraphic record: Geology, v. 46, p. 679–682.

    Google Scholar 

  • Davies, N. S., and Shillito, A. P., 2021, True substrates: the exceptional resolution and unexceptional preservation of deep-time snapshots on bedding surfaces: Sedimentology, in press.

    Google Scholar 

  • Davies, N. S., Shillito, A. P., and McMahon, W. J., 2019, Where does the time go? Assessing the chronostratigraphic fidelity of sedimentary geological outcrops in the Pliocene-Pleistocene red Crag Formation, eastern England: Journal of the Geological Society, v. 176, p. 1154-1168.

    Google Scholar 

  • de Natris, M. F., 2012, Facies- and time-analysis of the upper part of the Brent Group (mid-upper Jurassic) in the Greater Oseberg area, northern North Sea: M.Sc., thesis, University of Bergen, 90 p.

    Google Scholar 

  • de Natris, M., and Helland-Hansen, W., 2012, Where has all the time gone? Disentangling time in the Mid-Late Jurassic Tarbert Formation, northern North Sea: The Geological Society, London, William Smith Meeting 2012, Strata and Time: Probing the gaps in our understanding, Abstract, p. 40.

    Google Scholar 

  • Devine, P. E., 1991, Transgressive origin of channeled estuarine deposits in the Point Lookout Sandstone, northwestern New Mexico: a model for Upper Cretaceous, cyclic regressive parasequences of the U. S. Western Interior: American Association of Petroleum Geologists Bulletin, v. 75, p. 1039-1063.

    Google Scholar 

  • Donaldson, J. A., Eriksson, P. G. and Altermann, W., 2002, Actualistic versus non-actualistic conditions in the Precambrian: a reappraisal of an enduring discussion, in: Altermann, W. and Corcoran, P. L., eds., Precambrian Sedimentary Environments: a Modern Approach to Ancient Depositional Systems. International Association of Sedimentologists Special Publication 33, p. 3–13.

    Google Scholar 

  • Dorsey, R. J., Housen, B. A., Janecke, S. U., Fanning, C. M., and Spears, A. L. F., 2011, Stratigraphic record of basin development within the San Andreas fault system: Late Cenozoic Fish Creek-Vallecito basin, southern California: Geological Society of America Bulletin, v. 123, p. 771–793.

    Google Scholar 

  • Duller, R. A., Kougioumtzoglou, I., Dunning, S., and Fedele, J., 2012, Vertical and lateral patterns of grain size in the stratigraphic record, The Geological Society, London, William Smith Meeting 2012, Strata and Time: Probing the gaps in our understanding, Abstract, p. 10.

    Google Scholar 

  • Echavarria, L., Hernández, R., Allmendinger, R., and Reynolds, J., 2003, Subandean thrust and fold belt of northwestern Argentina: Geometry and timing of the Andean evolution: American Association of Petroleum Geologists Bulletin, v. 87, p. 965–985.

    Google Scholar 

  • Eriksson, P. G., Condie, K. C., Tirsgaard, H., Mueller, W. U., Alterman, W., Miall, A. D., Aspler, L. B., Catuneanu, O., and Chiarenzelli, J. R., 1998, Precambrian clastic sedimentation systems, in Eriksson, P. G., ed., Precambrian clastic sedimentation systems: Sedimentary Geology, Special Issue, v. 120, p. 5-53.

    Google Scholar 

  • Ettensohn, F. R., 2008, The Appalachian foreland basin in eastern United States, in Miall, A. D., ed., The Sedimentary Basins of the United States and Canada: Sedimentary basins of the World, v. 5, K. J. Hsü, Series Editor, Elsevier Science, Amsterdam, p. 105–179.

    Google Scholar 

  • Fiduk, J. C., and Behrens, E. W., 1993, A comparison of Plio-Pleistocene to recent sediment accumulation rates in the East breaks area, northwestern Gulf of Mexico, in Armentrout, J. M., Bloch, R., Olson, H. C., and Perkins, B. E., eds., Rates of Geologic Processes: Gulf Coast Section, Society of Economic Paleontologists and Mineralogists, Fourteenth Annual Research Conference, Houston, Texas, p. 41–55.

    Google Scholar 

  • Filomena, C. M., Stollhofen, H., 2011, Ultrasonic logging across unconformities — outcrop and core logger sonic patterns of the Early Triassic Middle Buntsandstein Hardegsen unconformity, southern Germany, Sedimentary Geology, v. 236, p. 185-196.

    Google Scholar 

  • Finney, S. C., Grubb, B. J., and Hatcher, R. D., Jr, 1996, Graphic correlation of Middle Ordovician graptolite shale, southern Appalachian: an approach for examining the subsidence and migration of a Taconic foreland basin: Geological Society of America Bulletin, v. 108, p. 355–371.

    Google Scholar 

  • Fischer, A. G., and Roberts, L. T., 1991, Cyclicity in the Green River Formation (lacustrine Eocene) of Wyoming: Journal of Sedimentary Petrology, v. 61, p. 1146–1154.

    Google Scholar 

  • Fletcher, C. J. N., 1988, Tidal erosion, solution cavities and exhalative mineralisation associated with the Jurassic unconformity at Ogmore, South Glamorgan: Proceedings of the Geologists Association, v. 99, p. 1-14.

    Google Scholar 

  • Fletcher, C. J. N., Davies, J. R., Wilson, D., and Smith, M., 1986, The depositional environment of the basal ‘Littoral Lias’ in the Vale of Glamorgan – a discussion of the reinterpretation by Ager (1986): Proceedings of the Geologists’ Association, v. 97, p. 383-384.

    Google Scholar 

  • Frazier, D. E., 1967; Recent deltaic deposits of the Mississippi River—their development and chronology: Transactions of the Gulf Coast Association of Geological Societies, v. 17, p. 287–315.

    Google Scholar 

  • Gould, H. R., 1970, The Mississippi Delta complex, in Morgan, J. P., ed., Deltaic sedimentation: modern and ancient: Society of Economic Paleontologists and Mineralogists Special Publication 15, p. 3-30.

    Google Scholar 

  • Gould, S. J., 1965, Is uniformitarianism necessary? American Journal of Science, v. 263, p. 223–228.

    Google Scholar 

  • Grabau, A. W., 1906, Types of sedimentary overlap. Geological Society of America Bulletin, v. 17, p. 567-636.

    Google Scholar 

  • Gradstein, F. M., Ogg, J. G., and Smith, A. G., eds., 2004a, A geologic time scale: Cambridge University Press, Cambridge, 610 p.

    Google Scholar 

  • Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., 2012, The Geologic time scale 2012: Elsevier, Amsterdam, 2 vols., 1176 p.

    Google Scholar 

  • Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., eds., 2020, Geologic time scale 2020: Elsevier, Amsterdam, 1357 p.

    Google Scholar 

  • Hajek, E. A., Heller, P. L., and Sheets, B. A., 2010, Significance of channel-belt clustering in alluvial basins: Geology, v. 38, p. 535–538.

    Google Scholar 

  • Hampson, G.J., 2010, Sediment dispersal and quantitative stratigraphic architecture across and ancient shelf: Sedimentology, v. 57, p. 96–141.

    Google Scholar 

  • Hampson, G.J., Jewell, T.O., Irfan, N., Gani, M.R. and Bracken, B., 2013, Modest changes in fluvial style with varying accommodation in regressive alluvial-to-coastal-plain wedge: Upper Cretaceous Blackhawk Formation, Wasatch Plateau, central Utah, U.S.A.: Journal of Sedimentary Research, v. 83, p. 145–169.

    Google Scholar 

  • Haq, B. U., Hardenbol, J., and Vail, P. R., 1987, Chronology of fluctuating sea levels since the Triassic (250 million years ago to present): Science, v. 235, p. 1156–1167.

    Google Scholar 

  • Haq, B. U., Hardenbol, J., and Vail, P. R., 1988, Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea-level Changes: an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 71–108.

    Google Scholar 

  • Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., Graciansky, P.-C., and Vailo, P. R., 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins, in Graciansky, P.-C. de, Hardenbol, J., Jacquin, T., and Vail, P. R., eds., Mesozoic and Cenozoic sequence stratigraphy of European basins, Society for Sedimentary Geology (SEPM) Special Publication 60, p. 3–13.

    Google Scholar 

  • Hassan, M. S., Venetikidis, A., Bryant, G., and Miall, A. D., 2018, The sedimentology of an erg margin: the Kayenta-Navajo transition (Lower Jurassic), Kanab, Utah: Journal of Sedimentary Research, v. 88, p. 613-640.

    Google Scholar 

  • Heckel, P. H., 1986, Sea-level curve for Pennsylvanian eustatic marine transgressive-regressive depositional cycles along midcontinent outcrop belt, North America: Geology, v. 14, p. 330-334.

    Google Scholar 

  • Heller, P. L., Beekman, F., Angevine, C. L., and Cloetingh, S. A. P. L., 1993, Cause of tectonic reactivation and subtle uplifts in the Rocky Mountain region and its effect on the stratigraphic record: Geology, v. 21, p. 1003–1006.

    Google Scholar 

  • Hilgen, F. J., 1991. Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary: Earth and Planetary Sciences Letters, v. 107, p. 349–368.

    Google Scholar 

  • Hilgen, F. J., Brinkhuis, H., and Zachariasse, W. J., 2006, Unit stratotypes for global stages. The Neogene perspective: Earth Science Reviews v. 74, p. 113-125.

    Google Scholar 

  • Hilgen, F. J., Hinnov, L. A., Aziz, H. A., Abels, H. A., Batenburg, S., Bosmans, J. H. C., de Boer, B., Hüsings, S. K., Kuiper, K. F., and Lourens, L. J., 2015, Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy in Smith, D. G., Bailey, R., J., Burgess, P., and Fraser, A., eds., Strata and time: Geological Society, London, Special Publication 404, p. 157–197.

    Google Scholar 

  • Hilgen, F. J., Kuiper, K., Krijgsman, W., Snel, E., and van der Laan, E., 2007, Astronomical tuning as the basis for high resolution chronostratigraphy: the intricate history of the Messinian Salinity Crisis: Stratigraphy, v. 4, p. 231–238.

    Google Scholar 

  • Hiscott, R. N., 1981, Deep-sea fan deposits in the Macigno Formation (Middle-Upper Oligocene) of the Gordana valley, northern Apennines, Italy — Discussion: Journal of Sedimentary Petrology, v. 51, p. 1015–1033.

    Google Scholar 

  • Hofmann, M. H., Wroblewski, A., and Boyd, R., 2011, Mechanisms controlling the clustering of fluvial channels and the compensational stacking of cluster belts: Journal of Sedimentary Research, v. 81, p. 670–685.

    Google Scholar 

  • Holbrook, J.M., 1996, Complex fluvial response to low gradients at maximum regression: a genetic link between smooth sequence-boundary morphology and architecture of overlying sheet sandstone: Journal of Sedimentary Research, v. 66, p. 713–722.

    Google Scholar 

  • Holbrook, J. M., 2001, Origin, genetic interrelationships, and stratigraphy over the continuum of fluvial channel-form bounding surfaces: an illustration from middle Cretaceous strata, southeastern Colorado: Sedimentary Geology, v. 144, p. 179–222.

    Google Scholar 

  • Holbrook, J. M., and Bhattacharya, J. P., 2012, Reappraisal of the sequence boundary in time and space: Case and considerations for an SU (subaerial unconformity) that is not a sediment bypass surface, a time barrier, or an unconformity: Earth Science Reviews, v 113, p. 271–302.

    Google Scholar 

  • Holbrook, J. M., and Miall, A. D., 2020, Time in the Rock: A field guide to interpreting past events and processes from siliciclastic stratigraphy: Earth Science Reviews, v. 203, 103121, 23 p.

    Google Scholar 

  • Holbrook, J., Scott, R. W., and Oboh-Ikuenobe, F. E., 2006, Base-level buffers and buttresses: a model for upstream versus downstream control on fluvial geometry and architecture within sequences: Journal of Sedimentary Research, v. 76, p. 162–174.

    Google Scholar 

  • Holmes, A., 1913, The age of the Earth: Harper, London

    Google Scholar 

  • Howell, J.A., and Flint, S.S., 2003, Siliciclastics case study: The Book Cliffs, in Coe, A., ed., The Sedimentary Record of Sea-level Change: Cambridge, U.K., Open University and Cambridge University Press, p. 135–208.

    Google Scholar 

  • Hoyt, J. H., and Henry, V. J., Jr., 1967, Influence of island migration on barrier island sedimentation: Geological Society of America Bulletin, v. 78, p. 77–86.

    Google Scholar 

  • Jackson, R. G. II, 1976, Depositional model of point bars in the lower Wabash River: Journal of Sedimentary Petrology, v. 46, p. 579–594.

    Google Scholar 

  • Jerolmack, D. J., and Paola, C., 2010, Shredding of environmental signals by sediment transport: Geophysical Research Letters, v. 37, L10401, 5 p.

    Google Scholar 

  • Jerolmack, D., and Sadler, P., 2007, Transience and persistence in the depositional record of continental margins: Journal of Geophysical Research, v. 112, F03S13, 14 p.

    Google Scholar 

  • Jervey, M. T., 1988, Quantitative geological modeling of siliciclastic rock sequences and their seismic expression, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea level Changes - an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 47–69.

    Google Scholar 

  • Johnson, M. E., and McKerrow, W. S., 1995, The Sutton Stone: an early Jurassic rocky shore deposit in South Wales: Palaeontology, v. 38, p. 529–541.

    Google Scholar 

  • Johnson, N. M., Sheikh, K. A., Dawson-Saunders, E., and McRae, L. E., 1988, The use of magnetic-reversal time lines in stratigraphic analysis: a case study in measuring variability in sedimentation rates, in Kleinspehn, K. L., and Paola, C., eds., New perspectives in basin analysis: Springer-Verlag Inc., Berlin and New York, p. 189–200.

    Google Scholar 

  • Johnson, N. M., Stix, J., Tauxe, L., Cerveny, P. F., and Tahirkheli, R. A. K., 1985, Paleomagnetic chronology, fluvial processes, and tectonic implications of the Siwalik deposits near Chinji Village, Pakistan: Journal of Geology, v. 93, p. 27–40.

    Google Scholar 

  • Jones, M. A., Heller, P. L., Roca, E., Garcés, M., and Cabrera, L., 2004, Time lag of syntectonic sedimentation across an alluvial basin: theory and example from the Ebro basin, Spain, Basin Research, v. 16, p. 467-488.

    Google Scholar 

  • Jordan, T. E., 1981, Thrust loads and foreland basin evolution, Cretaceous, western United States: American Association of Petroleum Geologists Bulletin, v. 65, p. 2506-2520.

    Google Scholar 

  • Kamp, P. J. J., and Turner, G. M., 1990, Pleistocene unconformity-bounded shelf sequences (Wanganui Basin, New Zealand) correlated with global isotope record: Sedimentary Geology, v. 68, p. 155–161.

    Google Scholar 

  • Kauffman, E. G., 1986, High-resolution event stratigraphy: regional and global bio-events, in Walliser, O. H. ed., Global bioevents: Lecture Notes on Earth History: Springer-Verlag, Berlin, p. 279–335.

    Google Scholar 

  • Kauffman, E. G., 1988, Concepts and methods of high-resolution event stratigraphy: Annual Reviews of Earth and Planetary Sciences, v. 16, p. 605–654.

    Google Scholar 

  • Kemp, D. B., 2012, Stochastic and deterministic controls on stratigraphic completeness and fidelity: International Journal of Earth Sciences (Geol. Rundschau), v. 101, p. 2225–2238. DOI https://doi.org/10.1007/s00531-012-0784-1.

  • Kemp, D. B., and Sadler, P. M., 2014, Climatic and eustatic signals in a global compilation of shallow marine carbonate accumulation rates: Sedimentology, v. 61, p. 1286–1297.

    Google Scholar 

  • Kidwell, S. M., 1988, Reciprocal sedimentation and noncorrelative hiatuses in marine-paralic siliciclastics: Miocene outcrop evidence: Geology, v. 16, p. 609–612.

    Google Scholar 

  • Kim, W., and Paola, C., 2007, Long-period cyclic sedimentation with constant tectonic forcing in an experimental relay ramp: Geology, v. 35, p. 331–334.

    Google Scholar 

  • Kocurek, G., and Day, M., 2018, What is preserved in the aeolian ock record? A Jurassic Entrada Sandstone case study at the Utah-Arizona border: Sedimentology, v. 65, p. 1301-1321.

    Google Scholar 

  • Kolb, C. R., and Van Lopik, J. R., 1966, Depositional environment of the Mississippi River deltaic plain - southeastern Louisiana, in Shirley, M. L., ed., Deltas in their geologic framework: Houston Geological Society, p. 17–61.

    Google Scholar 

  • Kominz, M. A., Browning, J. V., Miller, K. G., Sugarman, P. J., Mizintserva, S., and Scotese, C. R., 2008, late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis: Basin Research, v. 20, p. 211–226.

    Google Scholar 

  • Krystinik, L.F., DeJarnett, B.B., 1995, Lateral variability of sequence stratigraphic framework in the Campanian and Lower Maastrichtian of the Western Interior Seaway, in Van Wagoner, J.C., and Bertram, G.T., eds., Sequence Stratigraphy of Foreland Basin Deposits: American Association of Petroleum Geologists, Memoir 64, p. 11–25.

    Google Scholar 

  • Kumar, N., and Sanders, J. E., 1974, Inlet sequence: a vertical succession of sedimentary structures and textures created by the lateral migration of tidal inlets: Sedimentology, v. 21, p. 491–532.

    Google Scholar 

  • Leckie, D.A., 1994, Canterbury Plains, New Zealand--implications for sequence stratigraphic models. American Association of Petroleum Geologists, Bulletin, v. 78(8), p. 1240-1256.

    Google Scholar 

  • Leclair, S. F., 2011, Interpreting fluvial hydromorphology from the rock record: large-river peak flows leave no clear signature, in Davidson, S. K., Leleu, S., and North, C. P., eds., From river to rock record: Society for Sedimentary Geology (SEPM) Special Publication 97, p. 113–123.

    Google Scholar 

  • Lin, W., Bhattacharya, N. P., Jicha, B. R., Singer, B. S., and Matthews, W., 2021, Has Earth ever been ice-free? Implications for glacio-eustasy in the Cretaceous greenhouse age using high-resolution sequence stratigraphy: Geological Society of America Bulletin, v. 133, p. 243-252.

    Google Scholar 

  • Liu, S., and Nummedal, D., 2004, Late Cretaceous subsidence in Wyoming: Quantifying the dynamic component: Geology, v. 32, p. 397–400.

    Google Scholar 

  • Locklair, R. E., and Sageman, B. B., 2008, Cyclostratigraphy of the Upper Cretaceous Niobrara Formation, Western Interior, U.S.A.: A Coniacian-Santonian timescale: Earth and Planetary Science Letters, v. 269, p. 539–552.

    Google Scholar 

  • Loutit, T. S., Hardenbol, J., Vail, P. R., and Baum, G. R., 1988, Condensed sections: the key to age dating and correlation of continental margin sequences, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea-level Changes: an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 183–213.

    Google Scholar 

  • Lyell, C., 1830–1833, Principles of Geology, 3 vols.: John Murray, London (reprinted by Johnson Reprint Corp., New York, 1969).

    Google Scholar 

  • MacLeod, N., and Keller, G., 1991, How complete are Cretaceous/Tertiary boundary sections? A chronostratigraphic estimate based on graphic correlation: Geological Society of America Bulletin, v. 103, p. 1439-1457.

    Google Scholar 

  • Mandelbrot, B. B., 1983, The fractal geometry of nature: Freeman, New York, 468 p.

    Google Scholar 

  • McGowran, B., 2005, Biostratigraphy: Microfossils and Geological Time: Cambridge University Press, Cambridge, 459 p.

    Google Scholar 

  • McKee, B. A., Nittrouer, C. A., and Demaster, D. J., 1983, Concepts of sediment deposition and accumulation applied to the continental shelf near the mouth of the Yangtze River: Geology, v. 11, p. 631–633.

    Google Scholar 

  • McKee, E. D, Crosby, E. J., and Berryhill, H. L., Jr., 1967, Flood deposits, Bijou Creek, Colorado, June 1965: Journal of Sedimentary Petrology, v. 37, p. 829-851.

    Google Scholar 

  • Medwedeff, D. A., 1989, Growth fault-bend folding at Southeast Lost Hills, San Joaquin valley, California: American Association of Petroleum Geologists Bulletin, v. 73, p. 54-67.

    Google Scholar 

  • Meyers, S., 2012, Seeing red in cyclic stratigraphy, The Geological Society, London, William Smith Meeting 2012, Strata and Time: Probing the gaps in our understanding, Abstract, p. 18.

    Google Scholar 

  • Meyers, S. R., and Sageman, B. B., 2004, detection, quantification, and significance of hiatuses in pelagic and hemipelagic strata: Earth and Planetary Sciences Letters, v. 224, p. 55–72.

    Google Scholar 

  • Miall, A. D., 1978a, Tectonic setting and syndepositional deformation of molasse and other nonmarine-paralic sedimentary basins; Canadian Journal of Earth Sciences, v. 15, p. 1613-1632.

    Google Scholar 

  • Miall, A. D., 1978b, Fluvial sedimentology: an historical review, in Miall, A. D., ed., Fluvial Sedimentology: Canadian Society of Petroleum Geologists Memoir 5, p. 1-47.

    Google Scholar 

  • Miall, A. D., 1985, Architectural-element analysis: A new method of facies analysis applied to fluvial deposits: Earth Science Reviews, v. 22, p. 261–308.

    Google Scholar 

  • Miall, A. D., 1988a, Reservoir heterogeneities in fluvial sandstones: lessons from outcrop studies: American Association of Petroleum Geologists Bulletin, v. 72, p. 682–697.

    Google Scholar 

  • Miall, A. D., 1988b, Facies architecture in clastic sedimentary basins, in Kleinspehn, K., and Paola, C., eds., New perspectives in basin analysis: Springer-Verlag Inc., New York, p. 67–81.

    Google Scholar 

  • Miall, A. D., 1988c, Architectural elements and bounding surfaces in channelized clastic deposits: notes on comparisons between fluvial and turbidite systems, in Taira, A., and Masuda, F., eds., Sedimentary facies in the active plate margin: Terra Scientific Publishing Company, Tokyo, Japan, p. 3–15.

    Google Scholar 

  • Miall, A. D., 1991b, Hierarchies of architectural units in terrigenous clastic rocks, and their relationship to sedimentation rate, in A. D. Miall and N. Tyler, eds., The three-dimensional facies architecture of terrigenous clastic sediments and its implications for hydrocarbon discovery and recovery: Society of Economic Paleontologists and Mineralogists, Concepts in Sedimentology and Paleontology, v. 3, p. 6–12.

    Google Scholar 

  • Miall, A. D., 1995, Whither stratigraphy? Sedimentary Geology, v. 100, p. 5-20.

    Google Scholar 

  • Miall, A. D., 1996, The geology of fluvial deposits: sedimentary facies, basin analysis and petroleum geology: Springer-Verlag Inc., Heidelberg, 582 p.

    Google Scholar 

  • Miall, A. D., 1997, The geology of stratigraphic sequences, First edition: Springer-Verlag, Berlin, 433 p.

    Google Scholar 

  • Miall, A. D., 2010, The geology of stratigraphic sequences, second edition: Springer-Verlag, Berlin, 522 p.

    Google Scholar 

  • Miall, A. D., 2014a, Fluvial depositional systems: Springer-Verlag, Berlin 316 p.

    Google Scholar 

  • Miall, A. D., 2014b, The emptiness of the stratigraphic record: A preliminary evaluation of missing time in the Mesaverde Group, Book Cliffs, Utah: Journal of Sedimentary Research, v. 84, p. 457-469.

    Google Scholar 

  • Miall, A. D., 2015, Updating uniformitarianism: stratigraphy as just a set of “frozen accidents”, in Smith, D. G., Bailey, R., J., Burgess, P., and Fraser, A., eds., Strata and time: Geological Society, London, Special Publication 404, p. 11–36.

    Google Scholar 

  • Miall, A. D., 2016, The valuation of unconformities: Earth Science Reviews, v. 163, p. 22–71.

    Google Scholar 

  • Miall, A. D., and Arush, M., 2001a, The Castlegate Sandstone of the Book Cliffs, Utah: sequence stratigraphy, paleogeography, and tectonic controls: Journal of Sedimentary Research, v. 71, p. 536–547.

    Google Scholar 

  • Miall, A.D., and Arush, M., 2001b, Cryptic sequence boundaries in braided fluvial successions: Sedimentology, v. 48, p. 971–985.

    Google Scholar 

  • Miall, A. D., Catuneanu, O, 2019, The Western Interior Basin, in Miall, A. D., ed., The Sedimentary Basins of the United States and Canada, Second edition: Sedimentary basins of the World, v. 5, K. J. Hsü, Series Editor, Elsevier Science, Amsterdam, p. 401–443.

    Google Scholar 

  • Miall, A. D., Holbrook, J. M., and Bhattacharya, J. P., 2021, The stratigraphy machine: Journal of Sedimentary Research, v. 91, p. 595–610.

    Google Scholar 

  • Miall, A. D., and Miall, C. E., 2001, Sequence stratigraphy as a scientific enterprise: the evolution and persistence of conflicting paradigms: Earth Science Reviews, v. 54, #4, p. 321–348.

    Google Scholar 

  • Miall, A. D., and Miall, C. E., 2004, Empiricism and Model-Building in stratigraphy: Around the Hermeneutic Circle in the Pursuit of Stratigraphic Correlation. Stratigraphy: American Museum of Natural History, v. 1, p. 27–46.

    Google Scholar 

  • Middleton, G. V., Plotnick, R. E., and Rubin, D. M., 1995, Nonlinear dynamics and fractals; New numerical techniques for sedimentary data sets: Society for Sedimentary Geology, Tulsa, Oklahoma, Short Course No. 36, 174 p.

    Google Scholar 

  • Miller, K. G., Browning, J. V., Aubry, M.-P., Wade, B., Katz, M. E., Kulpecz, A. A., and Wright, J. D., 2008, Eocene-Oligocene global climate and sea-level changes: St. Stephens Quarry, Alabama: Geological Society of America Bulletin, v. 120, p. 34-53.

    Google Scholar 

  • Miller, K. G., and Mountain, G. S., 1994, Global sea-level change and the New Jersey margin, in Mountain, G. S., Miller, K. G., Blum, P., et al., eds., Proceedings of the Ocean Drilling Program, Initial Reports, v. 150, p. 11–20.

    Google Scholar 

  • Miller, K. G., Mountain, G. S., Browning, J. V., Kominz, M., Sugarman, P. J., Christi-Blick, N., Katz, M. E., and Wright, J. D., 1998, Cenozoic global sea level, sequences, and the New Jersey transect: results from coastal plain and continental slope drilling: Reviews of Geophysics, v. 36, p. 569–601.

    Google Scholar 

  • Miller, K. G., Wright, J. D., and Browning, J. V., 2005, Visions of ice sheets in a greenhouse world: Marine Geology, v. 217, p. 215–231.

    Google Scholar 

  • Monger, J. W. H., 1993, Cretaceous tectonics of the North American Cordillera, in Caldwell, W. G. E., and Kauffman, E. G., eds., Evolution of the Western Interior Basin: Geological Association of Canada Special Paper 39, 31–47.

    Google Scholar 

  • Nemec, W., 1988, Coal correlations and intrabasinal subsidence: a new analytical perspective, in Kleinspehn, K. L., and Paola, C., eds., New perspectives in basin analysis: Springer-Verlag Inc., Berlin and New York, p. 161–188.

    Google Scholar 

  • Nummedal, D., and Swift, D. J. P., 1987, Transgressive stratigraphy at sequence-bounding unconformities: some principles derived from Holocene and Cretaceous examples, in Nummedal, D., Pilkey, O. H., and Howard, J. D., eds., Sea-level fluctuation and coastal evolution; Society of Economic Paleontologists and Mineralogists Special Publication 41, p. 241–260.

    Google Scholar 

  • Olsen, P. E., 1990, Tectonic, climatic, and biotic modulation of lacustrine ecosystems—examples from Newark Supergroup of eastern North America, in Katz, B. J., ed., Lacustrine basin exploration: case studies and modern analogs: American Association of Petroleum Geologists Memoir 50, p. 209-224.

    Google Scholar 

  • Olsen, T., Steel, R. J., Høgseth, K., Skar, T., and Røe, S.-L., 1995, Sequential architecture in a fluvial succession: sequence stratigraphy in the Upper Cretaceous Mesaverde Group, Price Canyon, Utah: Journal of Sedimentary Research, v. B65, p. 265-280.

    Google Scholar 

  • Oomkens, E., 1970, Depositional sequences and sand distribution in the postglacial Rhône delta complex, in Morgan, J. P., ed., Deltaic sedimentation: modern and ancient: Society of Economic Paleontologists and Mineralogists Special Publication 15, p. 198-212.

    Google Scholar 

  • Paola, C., Straub, K., Mohrig, D., and Reinhardt, L., 2009, The unreasonable effectiveness of stratigraphic and geomorphic experiments: Earth Science Reviews, v. 97, p. 1–43.

    Google Scholar 

  • Pattison, S.A.J., 2018, Using classic outcrops to revise sequence stratigraphic models: Reevaluating the Campanian Desert Member (Blackhawk Formation) to lower Castlegate Sandstone interval, Book Cliffs, Utah and Colorado, USA: Geology, v. 47, p. 11-14.

    Google Scholar 

  • Pattison, S.A.J., 2019, Re-evaluating the sedimentology and sequence stratigraphy of classic Book Cliffs outcrops at Tusher and Thompson canyons, eastern Utah, USA: applications to correlation, modelling, and prediction in similar nearshore terrestrial to shallow marine subsurface settings worldwide. Marine and Petroleum Geology, v. 102, p. 202–230.

    Google Scholar 

  • Pattison, S.A.J., 2020a, Sediment-supply-dominated stratal architecture in a regressively stacked succession of shoreline sand bodies, Campanian Desert Member to Lower Castlegate Sandstone interval, Book Cliffs, Utah-Colorado, USA: Sedimentology, v. 67, p. 390-430.

    Google Scholar 

  • Pattison, S.A.J., 2020b, No evidence for an unconformity at the base of the lower Castlegate Sandstone in the Campanian Book Cliffs, Utah-Colorado, United States: Implications for sequence models: American Association of Petroleum Geologists Bulletin, v. 104, p. 595-628.

    Google Scholar 

  • Peper, T., Beekman, F., and Cloetingh, S., 1992, Consequences of thrusting and intraplate stress fluctuations for vertical motions in foreland basins and peripheral areas: Geophysical Journal International, v. 111, p. 104–126.

    Google Scholar 

  • Petit, B. S., Blum, M., Pecha, M., McLean, N., Bartschi, N. C. and Saylor, J. E., 2019, Detrital-zircon U-Pb paleodrainage reconstruction and geochronology of the Campanian Blackhawk-Castlegate succession, Wasatch Plateau and Book Cliffs, Uta, U.S.A., Journal of Sedimentary Research, v. 89, p. 273-292.

    Google Scholar 

  • Phillips, S., and Bustin, R. M., 1996, Sedimentology of the Changuinola peat deposit: organic and clastic sedimentary response to punctuated coastal subsidence: Geological Society of America Bulletin, v. 108, p. 794–814.

    Google Scholar 

  • Pillans, B., Alloway, B., Naish, T., Westgate, J., Abbott, S., and Palmer, A., 2005, Silicic tephras in Pleistocene shallow-marine sediments of Wanganui Basin, New Zealand: Journal of the Royal Society of New Zealand, v. 35, p. 43-90.

    Google Scholar 

  • Pirmez, C., Prather, B. E., Mallarino, G., O’Hayer, W. W., Droxler, A. W, and Winker, C. D., 2012, Chronostratigraphy of the Brazos-Trinity depositional system, western Gulf of Mexico: implications for deepwater depositional models, in Applications of the Principles of seismic geomorphology to continental slope and base-of-slope systems: case studies from seafloor and near-seafloor analogues: Society for Sedimentary Geology Special Publication 99, p. 111-143.

    Google Scholar 

  • Plint, A.G., Tyagi, A.A., McCausland, P.J.A., Krawetz, J.R., Zhang, H., Roca, X., Varban, B.L., Hu, Y.G., Kreitner, M.A., and Hay, M.J., 2012, Dynamic relationship between subsidence, sedimentation, and unconformities in mid-Cretaceous, shallow-marine strata of the Western Interior Foreland Basin: Links to Cordilleran tectonics, in Busby, C., and Azor, A., eds., Tectonics of Sedimentary Basins: Recent Advances: Wiley-Blackwell, Chichester, p. 480–507.

    Google Scholar 

  • Plotnick, R. E., 1986, A fractal model for the distribution of stratigraphic hiatuses: Journal of Geology, v. 94, p. 885–890.

    Google Scholar 

  • Pochat. S., Castelltort, S., Choblet, G., and Driessche, J. V. Den, 2009, High-resolution record of tectonic and sedimentary processes in growth strata: Marine and Petroleum Geology, v. 26, p. 1350–1364.

    Google Scholar 

  • Posamentier, H. W., Allan, G. P., and James, D. P., 1992, High-resolution sequence stratigraphy – the East Coulee Delta, Alberta: Journal of Sedimentary Petrology, v. 62, p. 310–317.

    Google Scholar 

  • Prather, B. E., Pirmez, C., and Winker, C. D., 2012, Stratigraphy of linked intraslope basins: Brazos-Trinity System, western Gulf of Mexico, in Application of the Principles of Seismic Geomorphology to Continental-Slope and Base-of-Slope Systems: Case Studies from Seafloor and Near-Seafloor Analogues: SEPM Special Publication 99, p. 83–109.

    Google Scholar 

  • Price, R. A., 1973, large-scale gravitational flow of supracrustal rocks, southern Canadian Rockies, in De Jong, K. A., and Scholten, R., eds., Gravity and Tectonics, Wiley-Interscience, New York, p. 491-502.

    Google Scholar 

  • Qayyum, F., de Groot, P., Hemstra. N., and Catuneanu, O., 2015, 4D Wheeler diagrams: concept and applications, in Smith, D. G., Bailey, R., J., Burgess, P., and Fraser, A., eds., Strata and time: Geological Society, London, Special Publication 404, p. 223–232.

    Google Scholar 

  • Ramsbottom, W. H. C., 1979, Rates of transgression and regression in the Carboniferous of NW Europe: Journal of the Geological Society, London, v. 136, p. 147-153.

    Google Scholar 

  • Runkel, A. C., Miller, J. F., McKay, R. M., Palmer, A. R., and Taylor, J. F., 2007, High-resolution sequence stratigraphy of lower Paleozoic sheet sandstones in central North America: the role of special conditions of cratonic interiors in development of stratal architecture: Geological Society of America Bulletin, v. 119, p. 860–881.

    Google Scholar 

  • Runkel, A. C., Miller, J. F., McKay, R. M., Palmer, A. R., and Taylor, J. F., 2008, The record of time in cratonic interior strata: does exceptionally slow subsidence necessarily result in exceptionally poor stratigraphic completeness? in Pratt, B. R., and Holmden, C., eds., Dynamics of epeiric seas: Geological Association of Canada Special Paper 48, p. 341–362.

    Google Scholar 

  • Ryer, T. A., 1993, Speculations on the origins of mid-Cretaceous clastic wedges, central Rocky Mountain region, United States, in Caldwell, W. G. E., and Kauffman, E. G., eds., Evolution of the Western Interior Basin: Geological Association of Canada Special Paper 39, p. 189–198.

    Google Scholar 

  • Sadler, P. M., 1981, Sedimentation rates and the completeness of stratigraphic sections: Journal of Geology, v. 89, p. 569–584.

    Google Scholar 

  • Sadler, P. M., 1999, The influence of hiatuses on sediment accumulation rates: GeoResearch Forum, v. 5, p. 15–40.

    Google Scholar 

  • Sadler, P. M., Cooper, R. A., and Crampton, J. S., 2014, High-resolution geobiologic time-lines: progress and potential, fifty years after the advent of graphic correlation: The Sedimentary Record, v. 12, #3, p. 4–9.

    Google Scholar 

  • Sadler, P. M., Cooper, R. A., and Melchin, M., 2009: High-resolution, early Paleozoic (Ordovician-Silurian) time scales: Geological Society of America Bulletin, v. 121, p. 887–906.

    Google Scholar 

  • Sadler, P. M., and Jerolmack, D., 2012, Scaling laws for aggradation, denudation and progradation rates: the case for time-scale invariance at sedimentary sources and sinks: The Geological Society, London, William Smith Meeting 2012, Strata and Time: Probing the gaps in our understanding, Abstract, p. 32.

    Google Scholar 

  • Sadler, P. M., and Jerolmack, D., 2015, Scaling laws for aggradation, denudation and progradation rates: the case for time-scale invariance at sediment sources and sinks, in Smith, D. G., Bailey, R., J., Burgess, P., and Fraser, A., eds., Strata and time: Geological Society, London, Special Publication 404, p. 69–88.

    Google Scholar 

  • Sageman, B. B., Singer, B. S., Meyers, S. R., Siewert, S. E., Walaszczyk, I., Condon, D. J., Jicha, B. R., Obradovich, J. D., and Sawyer, D. A., 2014, Integrating 40Ar/39Ar, U-Pb and astronomical clocks in the Cretaceous Niobrara Formation, Western Interior Basin, USA: Geological Society of America Bulletin, v. 126, p. 956-973.

    Google Scholar 

  • Salvany, J. M., Larrasoaña, J. G., Mediavilla, G., and Rebollo, A., 2011, Chronology and tecto-sedimentary evolution of the Late Pliocene to Quaternary deposits from the Lower Guadilquivir foreland basin, SW Spain: Sedimentary Geology, v. 241, p. 22-39.

    Google Scholar 

  • Scarponi, D., Kaufman, D., Amarosi, A. and Kowalewski, M., 2013, Sequence stratigraphy and the resolution of the fossil record: Geology, v. 41, p. 239–242.

    Google Scholar 

  • Schlager, W., 2004, Fractal nature of stratigraphic sequences, Geology, v. 32, p. 185-188.

    Google Scholar 

  • Schlager, W., 2005, Carbonate sedimentology and sequence stratigraphy: SEPM Concepts in Sedimentology and Paleontology #8, 200p.

    Google Scholar 

  • Schumm S. A., 1973, Geomorphic thresholds and complex response of drainage systems, in Morisawa, M. ed., Fluvial geomorphology, Publications in Geomorphology, State University of New York, Binghamton, N.Y., p. 299-310.

    Google Scholar 

  • Schumm, S. A., 1977, The fluvial system, John Wiley and Sons, New York, 338 p.

    Google Scholar 

  • Scott, A. C., and Stephens, R. S., 2015, British Pennsylvanian (Carboniferous) coal-bearing sequences: where is the time? in Smith, D. G., Bailey, R., J., Burgess, P., and Fraser, A., eds., Strata and time: Geological Society, London, Special Publication 404, p. 283–302.

    Google Scholar 

  • Shanley, K. W., and McCabe, P. J., 1994, Perspectives on the sequence stratigraphy of continental strata: American Association of Petroleum Geologists Bulletin, v. 78, p. 544–568.

    Google Scholar 

  • Sheets, B. A., Hickson, T. A., and Paola, C., 2002, Assembling the stratigraphic record: depositional patterns and time-scales in an experimental alluvial basin: Basin Research, v. 14, p. 287–301.

    Google Scholar 

  • Smith, A. G., Barry, T., Bown, P., Cope, J., Gale, A., Gibbard, P., Gregory, J., Hounslow, M., Kemp, D., Knox, R., Marshall, J., Oates, M., Rawson, P., Powell, J., and Waters, C., 2015, GSSPs, global stratigraphy and correlation: in Smith, D. G., Bailey, R., J., Burgess, P., and Fraser, A., eds., Strata and time: Geological Society, London, Special Publication 404, p. 37–67.

    Google Scholar 

  • Smith, D.G., 1994, Cyclicity or chaos? in de Boer, P.L.,and Smith, D.G., eds., Orbital Forcing and Cyclic Sequences. International Association of Sedimentologists, Special Publication 19, p. 531–544.

    Google Scholar 

  • Smith, W., 1815, A memoir to the map and delineation of the strata of England and Wales, with part of Scotland: London: John Carey, 51 p.

    Google Scholar 

  • Sommerfield, C. K., 2006, On sediment accumulation rates and stratigraphic completeness: lessons from Holocene ocean margins: Continental Shelf Research, v. 26, p. 2225–2240.

    Google Scholar 

  • Southard, J. B., Bohuchwal, L. A., and Romea, R. D., 1980, Test of scale modelling of sediment transport in steady unidirectional flow: Earth Surface Processes, v. 5, p. 17–23.

    Google Scholar 

  • Spieker, E.M., and Reeside, J.B., Jr., 1925, Cretaceous and Tertiary formations of the Wasatch Plateau, Utah: Geological Society of America, Bulletin, v. 36, p. 429–454.

    Google Scholar 

  • Stark, T. J., Zeng, H., and Jackson, A., 2013, An introduction to this special section: Chronostratigraphy: The Leading Edge, v. 32, p. 132–138.

    Google Scholar 

  • Stouthamer, E., Cohen, K. M., and Gouw, M. J. P., 2011, Avulsion and its implication for fluvial-deltaic architecture: insights from the Holocene Rhine-Meuse delta, in Davidson, S. K., Leleu, S., and North, C. P., eds., From river to rock record: Society for Sedimentary Geology (SEPM) Special Publication 97, p. 215–231.

    Google Scholar 

  • Stow, D. A. V., Howell, D. G., and Nelson, C. H., 1983, Sedimentary, tectonic, and sea-level controls on submarine fan and slope-apron turbidite systems: Geo-marine Letters, v. 3, p. 57–64.

    Google Scholar 

  • Strasser, A., Hilgen, F. J., and Heckel, P. H., 2006, Cyclostratigraphy — Concepts, definitions, and applications: Newsletters in Stratigraphy, v. 42, p. 75–114.

    Google Scholar 

  • Straub, K. M., Paola, C., Mohrig, D., Wolinsky, M. A., and George, T, 2009, Compensational stacking of channelized sedimentary deposits: Journal of Sedimentary Research, v. 79, 673-688.

    Google Scholar 

  • Strong, N., and Paola, C., 2008, Valleys that never were: time surfaces versus stratigraphic surfaces: Journal of Sedimentary Research, v. 78, p. 579–593.

    Google Scholar 

  • Sun, J., Li, Y., Zhang, Z., and Fu, B., 2010, Magnetostratigraphic data on Neogene growth folding in the foreland basin of the southern Tianshan Mountains: Geology, v. 37, p. 1051–1054.

    Google Scholar 

  • Suter, J. R., Berryhill, H. L., Jr., and Penland, S., 1987, Late Quaternary sea-level fluctuations and depositional sequences, southwest Louisiana continental shelf, in Nummedal, D., Pilkey, O. H., and Howard, J. D., eds., 1987, Sea-level fluctuation and coastal evolution: Society of Economic Paleontologists and Mineralogists Special Publication 41, p. 199–219.

    Google Scholar 

  • Tipper, J. C., 2015, The importance of doing nothing: stasis in sedimentation systems and its stratigraphic effects: in Smith, D. G., Bailey, R., J., Burgess, P., and Fraser, A., eds., Strata and time: Probing the Gaps in Our Understanding: Geological Society, London, Special Publication 404, p. 105–122.

    Google Scholar 

  • Trabucho-Alexandre, J. 2015. More gaps than shale: erosion of mud and its effect on preserved geochemical and palaeobiological signals. in: Smith, D. G., Bailey, R. J., Burgess, P. M., and Fraser, A.J., eds., Strata and Time: Probing the Gaps in Our Understanding: Geological Society, London, Special Publications, 404, p. 251–270.

    Google Scholar 

  • Vail, P. R., Audemard, F., Bowman, S. A., Eisner, P. N., and Perez-Crus, C., 1991, The stratigraphic signatures of tectonics, eustasy and sedimentology—an overview, in Einsele, G., Ricken, W., and Seilacher, A., eds., Cycles and events in stratigraphy: Springer-Verlag, Berlin, p. 617–659.

    Google Scholar 

  • Vail, P. R., Mitchum, R. M., Jr., Todd, R. G., Widmier, J. M., Thompson, S., III, Sangree, J. B., Bubb, J. N., and Hatlelid, W. G., 1977, Seismic stratigraphy and global changes of sea-level, in Payton, C. E., ed., Seismic stratigraphy - applications to hydrocarbon exploration: American Association of Petroleum Geologists Memoir 26, p. 49-212.

    Google Scholar 

  • Van den Bergh, G. D., Boer, W., Schaapveld, M.A. S., Duc, D. M., and van Weering, T. C. E., 2007, Recent sedimentation and sediment accumulation rates of the ba Lat prodelta (Red River, Vietnam), Journal of Asian Earth Sciences, v. 29, p. 545-557.

    Google Scholar 

  • Van Wagoner, J.C., 1995, Sequence stratigraphy and marine to nonmarine facies architecture of foreland basin strata, Book Cliffs, Utah, USA, in Van Wagoner, J.C., and Bertram, G.T., eds., Sequence Stratigraphy of Foreland Basin Deposits: American Association of Petroleum Geologists, Memoir 64, p. 137–223.

    Google Scholar 

  • Van Wagoner, J.C., and Bertram, G.T., eds., 1995, Sequence Stratigraphy of Foreland Basin Deposits - Outcrop and Subsurface Examples from the Cretaceous of North America: American Association of Petroleum Geologists, Memoir 64, 489 p.

    Google Scholar 

  • Van Wagoner, J.C., Jones, C.R., Tayler, D.R., Nummedal, D., Jennette, D.C., and Riley, G.W., 1991, Sequence stratigraphy: applications to shelf sandstone reservoirs: American Association of Petroleum Geologists, Field Conference, September 1991.

    Google Scholar 

  • Van Wagoner, J. C., Mitchum, R. M., Campion, K. M. and Rahmanian, V. D. 1990, Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: American Association of Petroleum Geologists Methods in Exploration Series 7, 55 p.

    Google Scholar 

  • Visser, M. J., 1980, Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: a preliminary note: Geology, v. 8, p. 543–546.

    Google Scholar 

  • Wang, Y., Straub, K. M., and Hajek, E. A., 2011, Scale-dependent compensational stacking: an estimate of autogenic time scales in channelized sedimentary deposits: Geology, v. 39, p. 811–814.

    Google Scholar 

  • Watts, A.B., and Steckler, M.S., 1979, Subsidence and eustasy at the continental margin of eastern North America: American Geophysical Union, Maurice Ewing Series, v. 3, p. 218–234.

    Google Scholar 

  • Weber, M.E., Wiedicke, M.H., Kudrass, H.R., Huebscher, C., and Erlenkeuser, H., 1997, Active growth of the Bengal Fan during sea-level rise and highstand: Geology, v. 25, p. 315–318.

    Google Scholar 

  • Weimer, R. J., 1970, Rates of deltaic sedimentation and intrabasin deformation, Upper Cretaceous of Rocky Mountain region, in Morgan, J. P., ed., Deltaic sedimentation modern and ancient: Society of Economic Paleontologists and Mineralogists Special Publication 15, p. 270-292.

    Google Scholar 

  • Wellner, R. W., and Bartek, L. R., 2003, The effect of sea level, climate, and shelf physiography on the development of incised-valley complexes: a modern example from the East China Sea: Journal of Sedimentary Research, v. 73, p. 926–940.

    Google Scholar 

  • Wheeler, H. E., 1958, Time-stratigraphy: American Association of Petroleum Geologists Bulletin, v. 42, p. 1047–1063.

    Google Scholar 

  • Wheeler, H. E., 1959, Stratigraphic units in time and space: American Journal of Science, vol. 257, p. 692–706.

    Google Scholar 

  • Willis, A. J., 2000, Tectonic control of nested sequence architecture in the Sego Sandstone, Neslen Formation, and Upper Castlegate Sandstone (Upper Cretaceous), Sevier Foreland Basin, Utah, U.S.A.: Sedimentary Geology, vol. 136, p. 277–318.

    Google Scholar 

  • Wobber, F. J., 1965, Sedimentology of the Lias (Lower Jurassic) of South Wales: Journal of Sedimentary Petrology, v. 35, p. 683–703.

    Google Scholar 

  • Wright, V. P., and Marriott, S. B., 1993, The sequence stratigraphy of fluvial depositional systems: the role of floodplain sediment storage: Sedimentary Geology, v. 86, p. 203–210.

    Google Scholar 

  • Yang Chang-shu, and Nio, S.-D., 1989, An ebb-tide delta depositional model - a comparison between the modern Eastern Scheldt tidal basin (southwest Netherlands) and the Lower Eocene Roda Sandstone in the southern Pyrenees (Spain): Sedimentary Geology, v. 64, p. 175–196.

    Google Scholar 

  • Yoshida, S., Willis, A., and Miall, A., 1996, Tectonic control of nested sequence architecture in the Castlegate Sandstone (Upper Cretaceous), Book Cliffs, Utah: Journal of Sedimentary Research, v. 66, p. 737-748.

    Google Scholar 

  • Young, R.G., 1955, Sedimentary faces and intertonguing in the Upper Cretaceous of the Book Cliffs, Utah-Colorado: Geological Society of America, Bulletin, v. 66, p. 177–202.

    Google Scholar 

  • Young, R.G., 1957, Late Cretaceous cyclic deposits, Book Cliffs, eastern Utah, American Association of Petroleum Geologists, Bulletin, v. 41, p. 1760-1774.

    Google Scholar 

  • Zaitlin, B. A., Warren, M. J., Potocki, D., Rosenthal, L., and Boyd, R., 2002, depositional styles in a low accommodation foreland basin setting: an example from the Basal Quartz (Lower Cretaceous), southern Alberta: Bulletin of Canadian Petroleum Geology, v. 50, p. 31–72.

    Google Scholar 

  • Zecchin, M., Caffau, M., Tosi, L., Civile, D., Brancolini, G., Rizzetto, F., and Roda, C., 2010, The impact of Late Quaternary glacio-eustasy and tectonics on sequence development: evidence from both uplifting and subsiding settings in Italy: Terra Nova, v. 22, p. 324–329.

    Google Scholar 

  • Zecchin, M., Catuneanu, O., and Caffau, M., 2019, Wave-ravinement surfaces: classification and key characteristics: Earth Science Reviews, v. 188, p. 210–239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miall, A.D. (2022). The Future of Time. In: Stratigraphy: A Modern Synthesis. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-87536-7_8

Download citation

Publish with us

Policies and ethics