Skip to main content

Facies Models

  • Chapter
  • First Online:
Stratigraphy: A Modern Synthesis

Abstract

Depositional environments may be classified into three broad groups, siliciclastic, carbonate and evaporite. Siliciclastic environments range from alluvial fan through fluvial, various coastal environments, the continental shelf, slope and deep-marine settings. The most important carbonate environments are shallow platform, tidal flat, reef and slope settings. Evaporite environments include shallow tidal flat and deep basin settings. This chapter provides a succinct “summary of the environment” for each of the major depositional settings, focusing on key facies indicators and sedimentary processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aigner, T., 1985, Storm depositional systems: Springer-Verlag Inc., New York, Lecture Notes in Earth Sciences 3, 174 p.

    Google Scholar 

  • Allen, J. R. L., 1964, Studies in fluviatile sedimentation: six cyclothems from the Lower Old Red Sandstone. Anglo-Welsh Basin: Sedimentology, v. 3, p. 163–198.

    Google Scholar 

  • Allen, J. R. L., 1980, Sand waves: a model of origin and internal structure: Sedimentary Geology, v. 26, p. 281–328.

    Google Scholar 

  • Anadón, P., Cabrera, L., and Kelts, K., eds., 1991, Lacustrine facies analysis: International Association of Sedimentologists Special Publication 13.

    Google Scholar 

  • Anderson, J. B., 1983, Ancient glacial-marine deposits: their spatial and temporal distribution, in Molnia, B. F., ed., Glacial-marine sedimentation: Plenum Press, New York, p. 3–92.

    Google Scholar 

  • Anderson, J. B., Brake, C., Domack, E., Meyers, N., and Wright, R., 1983, Development of a polar glacial-marine sedimentation model from Antarctic Quaternary deposits and glaciological information, in Molnia, B. F., ed., Glacial-marine sedimentation: Plenum Press, New York, p. 233–264.

    Google Scholar 

  • Andrews, J. T., and Matsch, C. L., 1983, Glacial marine sediments and sedimentation: an annotated bibliography: Geo Abstracts, Norwich, Bibliography II, 227 p.

    Google Scholar 

  • Arnott, R. W. C., 2010, Deep-marine sediments and sedimentary systems, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 295–322.

    Google Scholar 

  • Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. S., 1983, Stable isotopes in sedimentary geology: Society of Economic Paleontologists and Mineralogists Short Course 10, 435 p.

    Google Scholar 

  • Ashley, G. M., Shaw, J., and Smith, N. D., 1985, Glacial sedimentary environments: Society of Economic Paleontologists and Mineralogists Short Course 16, 246 p.

    Google Scholar 

  • Barnes, N. E., Normark, W. R., 1985, Diagnostic parameters for comparing modern fans and ancient turbidite systems. In: Bouma, A. H., Normark, W. R., and Barnes, N. E., eds., Submarine fans and related turbidite systems: Frontiers in Sedimentary Geology. Springer-Verlag, New York, p. 13–14.

    Chapter  Google Scholar 

  • Bernard, H. A., Leblanc, R. J., and Major, C. J., 1962, Recent and Pleistocene geology of southeast Texas, in Rainwater, E. H., and Zingula, R. P., eds., Geology of the Gulf Coast and central Texas: Geological Society of America, Guidebook for 1962 Annual Meeting., p. 175–224.

    Google Scholar 

  • Bernard, H. A., and Major, C. J., 1963, Recent meander belt deposits of the Brazos River; an alluvial “sand” model (abs): American Association of Petroleum Geologists Bulletin, v. 47, p. 350.

    Google Scholar 

  • Bernard, H. A., Major, C. F. Jr., and Parrott, B. S., 1959, The Galveston Barrier Island and environs - a model for predicting reservoir occurrence and trend: Transactions of the Gulf Coast Association of Geological Societies, v. 9, p. 221–224.

    Google Scholar 

  • Berné, S., Auffret, J.-P., and Walker, P., 1988, Internal structure of subtidal sandwaves revealed by high-resolution seismic reflection: Sedimentology, v. 35, p. 5–20.

    Google Scholar 

  • Berné, S., Durand, J., and Weber, O., 1991, Architecture of modern subtidal dunes (sand waves), Bay of Bourgneuf, France, in Miall, A. D., and Tyler, N., eds., The three-dimensional facies architecture of terrigenous clastic sediments, and its implications for hydrocarbon discovery and recovery: Society of Economic Paleontologists and Mineralogists, Concepts in Sedimentology and Paleontology, v. 3, p. 245–260.

    Google Scholar 

  • Beuf, S., Biju-Duval, B., De Charpal, O., Rognon, P., Gariel, O., and Bennacef, A., 1971, Les Grès du Paléozoïque Inférieur au Sahara. Sédimentaion et discontinuités, évolution structurale d'un craton: Technip, Paris, 464 p.

    Google Scholar 

  • Bhattacharya, J., 2010, Deltas, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 233–264.

    Google Scholar 

  • Bhattacharya, J., and Walker, R. G., 1992, Deltas, in Walker, R. G., and James, N. P., eds., Facies models: response to sea level change: Geological Association of Canada, Geotext 1, p. 157–177.

    Google Scholar 

  • Blakey, R. C., 1984: Marine sand-wave complex in the Permian of central Arizona: Journal of Sedimentary Petrology, v. 54, p. 29–51.

    Google Scholar 

  • Blum, M. D., and Roberts, H. H., 2012, The Mississippi delta region: Past, present, and future: Annual Review of Earth and Planetary Sciences, v. 40, p. 655–683.

    Google Scholar 

  • Boothroyd, J. C., Friedrich, N. E., and McGinn, S. R., 1985, Geology of microtidal coastal lagoons: Rhode Island, in Oertel, G. F., and Leatherman, S. P. eds., Barrier Islands: Marine Geology, Special Issue, v. 63, p. 35–76.

    Google Scholar 

  • Boulton, G. S., and Deynoux, M., 1981, Sedimentation in glacial environments and the identification of tills and tillites in ancient sedimentary sequences: Precambrian Research, v. 15, p. 397–422.

    Google Scholar 

  • Bouma, A. H., Normark, W. R., and Barnes, N. E., eds., 1985, Submarine fans and related turbidite systems: Springer-Verlag Inc., Berlin and New York, 351 p.

    Google Scholar 

  • Bradley, W. H., 1929, The Varves and Climate of the Green River Epoch: U.S. Geological Survey Professional Paper 158-E, 110 p.

    Google Scholar 

  • Brenchley, P. J., 1985, Storm influenced sandstone beds: Modern Geology, v. 9, p. 369–396.

    Google Scholar 

  • Bridge, J. S., 1993, Description and interpretation of fluvial deposits: a critical perspective: Sedimentology, v. 40, p. 801–810.

    Google Scholar 

  • Brookfield, M. E., 1977, The origin of bounding surfaces in ancient aeolian sandstones: Sedimentology, v. 24, p. 303–332.

    Google Scholar 

  • Chough, S., and Hesse, R., 1976, Submarine meandering talweg and turbidity currents flowing for 4,000 km in the Northwest Atlantic Mid-Ocean Channel, Labrador Sea: Geology, v. 4, p. 529–533.

    Google Scholar 

  • Chumakov, N. M., 1985, Glacial events of the past and their geological significance: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 319–346.

    Google Scholar 

  • Colella, A., and Prior, D. B., eds., 1990, Coarse-grained deltas: International Association of Sedimentologists Special Publication 10, 357 p.

    Google Scholar 

  • Coleman, J. M., and Gagliano, S. W., 1964, Cyclic sedimentation in the Mississippi River deltaic plain: Transactions of the Gulf Coast Association of Geological Societies, v. 14, p. 67–80.

    Google Scholar 

  • Coleman, J. M., and Wright, L. D., 1975, Modern river deltas: variability of processes and sand bodies, in Broussard, M. L., ed., Deltas, models for exploration: Houston Geological Society, Houston, p. 99–149.

    Google Scholar 

  • Coniglio, M., and Dix, G. R., 1992, Carbonate slopes, in Walker, R. G. and James, N. P., eds., Facies models: response to sea-level change: Geological Association of Canada, Geotext 1, p. 349–373.

    Google Scholar 

  • Cook, H. E., and Enos, P., eds., 1977, Deep-water carbonate environments: Society of Economic Paleontologists and Mineralogists Special Publication 25, 336 p.

    Google Scholar 

  • Cook, H. E., Hine, A. C., and Mullins, H. T., 1983, Platform margin and deep water carbonates: Society of Economic Paleontologists and Mineralogists Short Course 12, 573 p.

    Google Scholar 

  • Curray, J. R., 2014, The Bengal depositional system: from rift to orogeny: Marine Geology, v. 352, p. 59–69.

    Google Scholar 

  • Dalrymple, R. W., 1984, Morphology and internal structure of sandwaves in the Bay of Fundy: Sedimentology, v. 31, p. 365–382.

    Google Scholar 

  • Dalrymple, R. W., 2010, Tidal depositional systems, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 201–231.

    Google Scholar 

  • Dalrymple, R. W., Boyd, R., and Zaitlin, B. A., eds., 1994, Incised-valley systems: origin and sedimentary sequences: SEPM (Society for Sedimentary Geology) Special Publication 51, 391 p.

    Google Scholar 

  • Dalrymple, R. W., Leckie, D. A., and Tillman, R. W., eds., 2006, Incised valleys in space and time: SEPM Special Publication 85, 348 p.

    Google Scholar 

  • Davies, P. J., Symonds, P. A., Feary, D. A., and Pigram, C. J., 1989, The evolution of the carbonate platforms of northeast Australia, in Crevello, P. D., Wilson, J. D., Sarg, J. F., and Read, J. F., eds., Controls on carbonate platform and basin development: Society for Sedimentary Geology (SEPM) Special Publication 44, p. 233–258.

    Google Scholar 

  • Davis, R. A., Jr., and Hayes, M. O., 1984, What is a wave-dominated coast? Marine Geology, v. 60, p. 313–329.

    Article  Google Scholar 

  • Deynoux, M., ed., 1985, Glacial record: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 51, 451 p. (special issue)

    Google Scholar 

  • Dickson, J. A. D., 1985, Diagenesis of shallow-marine carbonates, in Brenchley, P. J., and Williams, B. P. J. eds., Sedimentology, recent developments and applied aspects: Blackwell Scientific Publications, Oxford, p. 173–188.

    Google Scholar 

  • Doyle, J. D., and Sweet, M. L., 1995, Three-dimensional distribution of lithofacies, bounding surfaces, porosity, and permeability in a fluvial sandstone: Gypsy Sandstone of northern Oklahoma: American Association of Petroleum Geologists Bulletin, v. 79, p. 70–96.

    Google Scholar 

  • Dreimanis, A., 1985, Field criteria for the recognition of till or tillite: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 51, p. 7–14.

    Article  Google Scholar 

  • Eberli, G., and Ginsburg, R. N., 1989, Cenozoic progradation of northwestern Great Bahama Bank, a record of lateral platform growth and sea-level fluctuations, in Crevello, P. D., Wilson, J. L., Sarg, J. F., and Read, J. F., eds., Controls on carbonate platform and basin development: Society of Economic Paleontologists and Mineralogists Special Publication 44, p. 339–351.

    Google Scholar 

  • Eyles, C. H., and Eyles, N., 2010, Glacial deposits, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 73–104.

    Google Scholar 

  • Eyles, N., 1994, Glacial geology: An introduction for engineers and earth scientists: Pergamon Press, Oxford, 409 p.

    Google Scholar 

  • Eyles, N., 1993, Earth’s glacial record and its tectonic setting: Earth-Science Reviews, v. 35, p. 1–248.

    Google Scholar 

  • Eyles, N., 2008, Glacio-epochs and the supercontinent cycle after ~3.0 Ga: Tectonic boundary conditions for glaciation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 258, p. 89–129.

    Article  Google Scholar 

  • Eyles, N., and Clark, B. M., 1986, Significance of hummocky and swaley cross-stratification in late Pleistocene lacustrine sediments of the Ontario basin, Canada: Geology, v. 14, p. 679–682.

    Google Scholar 

  • Eyles, N., Day, T. E., and Gavican, A., 1987, Depositional controls on the magnetic characteristics of lodgement tills and other glacial diamict facies: Canadian Journal of Earth Sciences, v. 24, p. 2436–2458.

    Google Scholar 

  • Eyles, N., Eyles, C. H., and Miall, A. D., 1983, Lithofacies types and vertical profile models; an alternative approach to the description and environmental interpretation of glacial diamict sequences: Sedimentology, v. 30, p. 393–410.

    Google Scholar 

  • Eyles, C. H., Eyles, N., and Miall, A. D., 1985, Models of glaciomarine sedimentation and their application to the interpretation of ancient glacial sequences: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 51, p. 15–84.

    Article  Google Scholar 

  • Eyles, N., and Miall, A. D., 1984, Glacial facies, in Walker, R. G., ed., Facies models, 2nd edition: Geoscience Canada Reprint Series 1, p. 15–38.

    Google Scholar 

  • Farrell, K. M., 1987, Sedimentology and facies architecture of overbank deposits of the Mississippi River, False River region, Louisiana, in Ethridge, F. G., Flores, R. M., and Harvey, M. D., eds., Recent developments in fluvial sedimentology: Society of Economic Paleontologists and Mineralogists Special Publication 39, p. 111–120.

    Google Scholar 

  • Farrell, K. M., Harris, W. B., Mallinson, D. J., Culver, S. J., Riggs, S. R., Pierson, J., Self-Trail, J. M., and Lautier, J. C., 2012, Standardizing texture and facies codes for a process-based classification of clastic sediment and rock: Journal of Sedimentary Research, v. 82, p. 364–378.

    Google Scholar 

  • Fisher, W. L., Brown, L. F., Scott, A. J., and McGowen, J. H., 1969, Delta systems in the exploration for oil and gas: University of Texas Bureau of Economic Geology, 78 p.

    Google Scholar 

  • Flemming, B. W., 1980, Sand transport and bedform patterns on the continental shelf between Durban and Port Elizabeth (southeast Africa continental margin): Sedimentary Geology, v. 26, p. 179–205.

    Google Scholar 

  • Flores, R. M., 1981, Coal deposition in fluvial paleoenvironments of the Paleocene Tongue River Member of the Fort Union Formation, Powder River area, Powder River basin, Wyoming and Montana, in Ethridge, F. G., and Flores, R. M., eds., Recent and ancient nonmarine depositional environments: models for exploration: Society of Economic Paleontologists and Mineralogists Special Publication 31, p. 161–190.

    Google Scholar 

  • Frakes, L. A., 1979, Climates throughout geologic time: Elsevier, Amsterdam, 310 p.

    Google Scholar 

  • Frakes, L. A., Francis, J. E., and Syktus, J. I., 1992, Climate modes of the Phanerozoic: Cambridge University Press, Cambridge, 274 p.

    Google Scholar 

  • Frazier, D. E., 1967; Recent deltaic deposits of the Mississippi River—their development and chronology: Transactions of the Gulf Coast Association of Geological Societies, v. 17, p. 287–315.

    Google Scholar 

  • Galloway, W. E., 1975, Process framework for describing the morphologic and stratigraphic evolution of the deltaic depositional systems, in Broussard, M. L., ed., Deltas, models for exploration: Houston Geological Society, Houston, p. 87–98.

    Google Scholar 

  • Glennie, K. W., 1972, Permian Rotliegendes of northwest Europe interpreted in light of modern desert sedimentation studies: American Association of Petroleum Geologists Bulletin, v. 56, p. 1048–1071.

    Google Scholar 

  • Glennie, K. W., 1983, Lower Permian Rotliegend desert sedimentation in the North Sea area, in Brookfield, M. E., and Ahlbrandt, T. S., eds., Eolian sediments and processes: Elsevier, Amsterdam, Developments in Sedimentology, v. 38, p. 521–541.

    Google Scholar 

  • Hambrey, M. J., and Harland, W. B., 1981a, Criteria for the identification of glacigenic deposits, in Hambrey, M. J., and Harland, W. B., eds., Earth's Pre-Pleistocene glacial record: Cambridge University Press, Cambridge, p. 14–27.

    Google Scholar 

  • Hambrey, M. J., and Harland, W. B., eds., 1981b, Earth's Pre-Pleistocene glacial record: Cambridge University Press, Cambridge, 1004 p.

    Google Scholar 

  • Handford, C. R., 1986, Facies and bedding sequences in shelf-storm-deposited carbonates - Fayettville Shale and Pitkin Limestone: Journal of Sedimentary Petrology, v. 56, p. 123–137.

    Google Scholar 

  • Hardie, L. A., Smoot, J. P., and Eugster, H. P., 1978, Saline lakes and their deposits: a sedimentological approach, in Matter, A., and Tucker, M. E., eds., Modern and ancient lake sediments: International Association of Sedimentologists Special Publication 2, p. 7–41.

    Google Scholar 

  • Harris, P. T., 1988, Large-scale bedforms as indicators of mutually evasive sand transport and the sequential infilling of wide-mouthed estuaries: Sedimentary Geology, v. 273–298.

    Google Scholar 

  • Hayes, M. O., 1967, Hurricanes as geological agents: Case studies of Hurricanes Carla, 1961, and Cindy, 1963: University of Texas, Bureau of Economic Geology, Austin, Texas, Report of Investigations No. 61.

    Google Scholar 

  • Hayes, M. O., 1976, Morphology of sand accumulation in estuaries; an introduction to the symposium, in Cronin, L. E., ed., Estuarine Research, v. 2, Geology and Engineering: Academic Press, London, p. 3–22.

    Google Scholar 

  • Hayes, M. O., 1979, Barrier island morphology as a function of tidal and wave regime, in Leatherman, S. P. ed., Barrier islands—from the Gulf of St. Lawrence to the Gulf of Mexico: Academic Press, New York, p. 1–27.

    Google Scholar 

  • Hine, A. C., 1977, Lily Bank, Bahamas: history of an active oolite sand shoal: Journal of Sedimentary Petrology, v. 47, p. 1554–1581.

    Google Scholar 

  • James, N. P., and Bourque, P.-A., 1992, Reefs and mounds, in Walker, R. G. and James, N. P., eds., Facies models: response to sea-level change: Geological Association of Canada, Geotext 1, p. 323–347.

    Google Scholar 

  • James, N. P., and Dalrymple, R. W., eds., 2010, Facies Modesl 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, 586 p.

    Google Scholar 

  • James, N. P., and Lukasik, J., 2010, Cool- and cold-water neritic carbonates, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 371–420.

    Google Scholar 

  • James, N. P., Kendall, A. C., and Pufahl, P. K., 2010, Introduction to biological and biochemical facies models, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 323–340.

    Google Scholar 

  • Jenkyns, H. C., 1986, Pelagic environments. In: Reading, H. G., ed., Sedimentary environments and facies, 2nd edn. Blackwell Scientific Publications, Oxford, p. 343–397.

    Google Scholar 

  • Johnson, H. D., and Baldwin, C. T., 1996, Shallow clastic seas, in Reading. H. G., ed., Sedimentary environments: processes, facies and stratigraphy: Blackwell Science, Oxford, p. 232–280.

    Google Scholar 

  • Jones, B., 2010, Warm-water neritic carbonates, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 341–369.

    Google Scholar 

  • Katz, B. J., ed., 1990, Lacustrine basin exploration: case studies and modern analogs: American Association of Petroleum Geologists Memoir 50, 340 p.

    Google Scholar 

  • Kendall, A. C., 1992, Evaporites, in Walker, R. G. and James, N. P., eds., Facies models: response to sea-level change: Geological Association of Canada, Geotext 1, p. 375–409.

    Google Scholar 

  • Klovan, J. E., 1964, Facies analysis of the Redwater Reef complex, Alberta, Canada. Bull Can Pet Geol., v. 12, p. 1–100.

    Google Scholar 

  • Kocurek, G. A., 1988, First-order and super bounding surfaces in eolian sequences - bounding surfaces revisited: Sedimentary Geology, v. 56, p. 193–206.

    Google Scholar 

  • Kraus, M. J., and Bown, T. M., 1988, Pedofacies analysis; a new approach to reconstructing ancient fluvial sequences: Geological Society of America Special Paper 216, p. 143–152.

    Google Scholar 

  • Leckie, D. A., and Krystinick, L. F., 1989, Is there evidence for geostrophic currents preserved in the sedimentary record of inner to middle shelf deposits? J Sediment Petrol., v. 59, p. 862–870.

    Google Scholar 

  • Machel, H.-G., 1985, Cathodoluminescence in calcite and dolomite and its chemical interpretation: Geoscience Canada, v. 12, p. 139–147.

    Google Scholar 

  • Mackiewicz, N. E., Powell, R. D., Carlson, P. R., and Molnia, B. F., 1984, Interlaminated ice-proximal glacimarine sediments in Muir Inlet, Alaska: Marine Geology, v. 57, p. 113–148.

    Google Scholar 

  • Macquaker, J. H. S., Taylor, K. G., and Gawthorpe, R. L. 2007, High-resolution facies analyses of mudstones: implications for paleoenvironmental and sequence stratigraphic interpretations of offshore ancient mud-dominated successions: Journal of Sedimentary Research, v. 77, p. 324–339.

    Google Scholar 

  • Martin, A. K., and Flemming, B. W., 1986, The Holocene shelf sediment wedge off the south and east coast of South Africa; in Knight, R. J., and McLean, J. R., eds., Shelf sands and sandstones: Canadian Society of Petroleum Geologists Memoir 11, p. 27–44.

    Google Scholar 

  • Marwick, P. J., and Rowley, D. B., 1998, The geological evidence for Triassic to Pleistocene glaciation: implications for eustasy, in Pindell, J. L., and Drake, C. L., eds., Paleogeographic evolution and non-glacial eustasy, northern South America: Society for Sedimentary Geology (SEPM) Special Publication 58, p. 17–43.

    Google Scholar 

  • Matter, A., and Tucker, M., eds., 1978, Modern and Ancient lake sediments: International Association of Sedimentologists Special Publication 2, 290 p.

    Google Scholar 

  • McIlreath, I. A., and James, N. P., 1984, Carbonate slopes, in Walker, ed., R. G., Facies Models, 2nd edition: Geoscience Canada Reprint Series 1, p. 245–257.

    Google Scholar 

  • McKee, E. D., ed., 1979, A study of global sand seas: U.S. Geological Survey Professional Paper 1052.

    Google Scholar 

  • McKee, E. D., and Ward, W. C., 1983, Eolian environment, in Scholle, P. A., Bebout, D. G., and Moore, C. H., eds., Carbonate depositional environments: American Association of Petroleum Geologists Memoir 33, p. 131–170.

    Google Scholar 

  • McPherson, J. G., Shanmugam, G., and Moiola, R. J., 1987, Fan-deltas and braid deltas: varieties of coarse-grained deltas: Geological Society of America Bulletin, v. 99, p. 331–340.

    Google Scholar 

  • Miall, A. D., 1977, A review of the braided river depositional environment: Earth Science Reviews, v. 13, p. 1–62.

    Google Scholar 

  • Miall, A. D., 1978, Lithofacies types and vertical profile models in braided river deposits: a summary, in Miall, A. D., ed. Fluvial Sedimentology: Canadian Society of Petroleum Geologists Memoir 5, p. 597–604.

    Google Scholar 

  • Miall, A. D., 1985, Architectural-element analysis: A new method of facies analysis applied to fluvial deposits: Earth Science Reviews, v. 22, p. 261–308.

    Google Scholar 

  • Miall, A. D., 1988a, Reservoir heterogeneities in fluvial sandstones: lessons from outcrop studies: American Association of Petroleum Geologists Bulletin, v. 72, p. 682–697.

    Google Scholar 

  • Miall, A. D., 1988b, Facies architecture in clastic sedimentary basins, in Kleinspehn, K., and Paola, C., eds., New perspectives in basin analysis: Springer-Verlag Inc., New York, p. 67–81.

    Google Scholar 

  • Miall, A. D., 1996, The geology of fluvial deposits: sedimentary facies, basin analysis and petroleum geology: Springer-Verlag Inc., Heidelberg, 582 p.

    Google Scholar 

  • Miall, A. D., 2010, The geology of stratigraphic sequences, second edition: Springer-Verlag, Berlin, 522 p.

    Google Scholar 

  • Miall, A. D., and Tyler, N., eds., 1991, The three-dimensional facies architecture of terrigenous clastic sediments, and its implications for hydrocarbon discovery and recovery: Society of Economic Paleontologists and Mineralogists Concepts and Models Series, v. 3, 309 p.

    Google Scholar 

  • Miller, J. N. G. 1996, Glacial sediments, in Reading, H. G., ed., Sedimentary environments: processes, facies and stratigraphy: Blackwell Science, Oxford, p. 454–484.

    Google Scholar 

  • Molnia, B. F., 1983a, Subarctic glacial-marine sedimentation: a model, in Molnia, B. F., ed., Glacial-marine sedimentation: Plenum Press, New York, p. 95–144.

    Google Scholar 

  • Molnia, B. F., ed., 1983b, Glacial-marine sedimentation: Plenum Press, New York, 844 p.

    Google Scholar 

  • Musial, G., Reynaud, J-Y., Gingras, M. K., Féniès, H., Labourdette, R., and Parize, O., 2012, Subsurface and outcrop characterization of large tidally influenced point bars of the Cretaceous McMurray Formation (Alberta, Canada): Sedimentary Geology, v. 279, p. 156–172.

    Google Scholar 

  • Mutti, E., Ricci-Lucchi, F., 1972, Le turbiditi dell’Appennino settentrionale: introduzione all’ analisi di facies: Soc. Geol Ital Mem 11, p. 161–199.

    Google Scholar 

  • Nanson, G. C., and Croke, J. C., 1992, A genetic classification of floodplains: Geomorphology, v. 4, p. 459–486.

    Google Scholar 

  • Niederoda, A. W., Swift, D. J. P., Figueiredo, A. G., Jr., and Freeland, G. L., 1985, Barrier island evolution, middle Atlantic shelf, U.S.A. Part II: Evidence from the shelf floor, in Oertel, G. F. and Leatherman, S. P. eds., Barrier islands: Marine Geology Special Issue, v. 63, p. 363–396.

    Google Scholar 

  • Nilsen, T., Shew, R., Steffens, G., and Studlick, J., eds., 2007, Atlas of deep-water outcrops: American Association of Petroleum Geologists, Studies in Geology 56, 504 p.

    Google Scholar 

  • Nummedal, D., and Swift, D. J. P., 1987, Transgressive stratigraphy at sequence-bounding unconformities: some principles derived from Holocene and Cretaceous examples, in Nummedal, D., Pilkey, O. H., and Howard, J. D., eds., Sea-level fluctuation and coastal evolution; Society of Economic Paleontologists and Mineralogists Special Publication 41, p. 241–260.

    Google Scholar 

  • Olsen, P. E., 1984, Periodicity of lake-level cycles in the Late Triassic Lockatong Formation of the Newark Basin (Newark Supergroup, New Jersey and Pennsylvania), in Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B., eds., Milankovitch and climate: NATO ASI Series, D. Reidel Publishing Company, Dordrecht, Part 1, p. 129–146.

    Google Scholar 

  • Olsen, P. E., 1986, A 40-million year lake record of Early Mesozoic orbital climatic forcing: Science, v. 234, p. 842–848.

    Google Scholar 

  • Olsen, P. E., 1990, Tectonic, climatic, and biotic modulation of lacustrine ecosystems—examples from Newark Supergroup of eastern North America, in Katz, B. J., ed. Lacustrine Basin Exploration: Case Studies and Modern Analogs: American Association of Petroleum Geologists Memoir 50, p. 209–224.

    Google Scholar 

  • Orton, G. J., and Reading, H. G., 1993, Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size: Sedimentology, v. 40, p. 475–512.

    Google Scholar 

  • Penland, S., Boyd, R., and Suter, J. R., 1988, Transgressive depositional systems of the Mississippi delta plain: a model for barrier shoreline and shelf sand development: Journal of Sedimentary Petrology, v. 58, p. 932–949.

    Google Scholar 

  • Picard, M. D., and High, L. R., Jr., 1981, Physical stratigraphy of ancient lacustrine deposits, in Ethridge, F. G., and Flores, R. M., eds., Recent and ancient nonmarine depositional environments: models for exploration: Society of Economic Paleontologists and Mineralogists Special Publication 31, p. 233–259.

    Google Scholar 

  • Platt, N. H., and Keller, B., 1992, Distal alluvial deposits in a foreland basin setting — the Lower Freshwater Molasse (Lower Miocene), Switzerland: sedimentology, architecture and palaeosols: Sedimentology, v. 39, p. 545–565.

    Google Scholar 

  • Playton, T. E., Janson, X., and Kerans, C., 2010, Carbonate slopes, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 449–476.

    Google Scholar 

  • Plint, A. G., 1988, Sharp-based shoreface sequences and “offshore bars” in the Cardium Formation of Alberta: their relationship to relative changes in sea level, in Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C., eds., Sea-level Changes: an integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 357–370.

    Google Scholar 

  • Plint, A. G., 2010, Wave- and storm-dominated shoreline and shallow-marine systems, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 167–199.

    Google Scholar 

  • Pomar, L., and Hallock, P., 2008, Carbonate factories: a conundrum in sedimentary geology: Earth Science Reviews, v. 87, p. 134–169.

    Google Scholar 

  • Porter, M. L., 1986, Sedimentary record of erg migration: Geology, v. 14, p. 497–500.

    Google Scholar 

  • Postma, G., 1990, Depositional architecture and facies of river and fan deltas: a synthesis, in Colella, A., and Prior, D. B., eds., Coarse-grained deltas: International Association of Sedimentologists Special Publication 10, p. 13–27.

    Google Scholar 

  • Powell, R. D., 1981, A model for sedimentation by tidewater glaciers: Annals of Glaciology, v. 2, p. 129–134.

    Google Scholar 

  • Powell, R. D., 1983, Glacial marine sedimentation processes and lithofacies of temperate tidewater glaciers, Glacier Bay, Alaska, in Molnia, B. F., ed., Glacial-marine sedimentation: Plenum Press, New York, p. 185–232.

    Google Scholar 

  • Powell, R. D., 1984, Glaciomarine processes and inductive lithofacies modelling of ice shelf and tidewater glacier sediments based on Quaternary examples: Marine Geology, v. 57, p. 1–52.

    Google Scholar 

  • Pratt, B. R., 2010, Peritidal carbonates, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 401–420.

    Google Scholar 

  • Pratt, B. R., and Holmden, C., eds., 2008, Dynamics of epeiric seas: Geological Association of Canada Special Paper 48.

    Google Scholar 

  • Principaud, M., Mulder, T., Hanquiez, V., Ducassou, E., Eberli, G. P., Chabaud, L., and Borgomano, J., 2018, Recent morphology and sedimentary processes along the western slope of Great Bahama Bank (Bahamas): Sedimentology, v. 65, p. 2088–2116.

    Google Scholar 

  • Purdy, E. G., 1963, Recent calcium carbonate facies of the Great Bahama Bank: Journal of Geology, v. 71, p. 334–355, p. 472–497.

    Google Scholar 

  • Reading, H. G., ed., 1986, Sedimentary environments and facies, second ed.: Blackwell, Oxford, 615 p.

    Google Scholar 

  • Reading, H. G., ed., 1996, Sedimentary environments: processes, facies and stratigraphy, third edition: Blackwell Science, Oxford, 688 p.

    Google Scholar 

  • Reading, H. G., and Collinson, J. D., 1996, Clastic coasts, in Reading, H. G., ed., Sedimentary environments: processes, facies and stratigraphy, third edition: Blackwell Science, Oxford, p. 154–231.

    Google Scholar 

  • Reading, H. G., and Richards, M., 1994, Turbidite systems in deep-water basin margins classified by grain-size and feeder system: American Association of Petroleum Geologists Bulletin, v. 78, p. 792–822.

    Google Scholar 

  • Reinson, G. E., 1992, Transgressive barrier island and estuarine systems, in Walker, R. G. and James, N. P., eds., Facies models: response to sea-level change: Geological Association of Canada, Geotext 1, p. 179–194.

    Google Scholar 

  • Renaut, R. W., and Gierlowski-Kordesch, E. H., 2010, Lakes, in James, N. P., and Dalrymple, R. W., eds., Facies Models 4: GEOtext 6, Geological Association of Canada, St. John’s, Newfoundland, p. 541–575.

    Google Scholar 

  • Richards, M., Bowman, M., and Reading, H., 1998, Submarine fan systems I: characterization and stratigraphic prediction: Marine and Petroleum Geology, v. 15, p. 689–717.

    Google Scholar 

  • Roberts, H. H., 1987, Modern carbonate-siliciclastic transitions: humid and arid tropical examples: Sedimentary Geology, v. 50, p. 25–66.

    Google Scholar 

  • Rosenthal, L., 1988, Wave dominated shorelines and incised channel trends: Lower Cretaceous Glauconite Formation, west-central Alberta, in James, D. P., and Leckie, D. A., eds., 1988, Sequences, stratigraphy, sedimentology: surface and subsurface: Canadian Society of Petroleum Geologists Memoir 15, p. 207–230.

    Google Scholar 

  • Ryder, R. T., 1980, Lacustrine sedimentation and hydrocarbon occurrences: a review, in American Association of Petroleum Geologists Fall Education Conference, 103 p.

    Google Scholar 

  • Schieber, J., Southard, J. B., Kissling, P., Rossman, B., and Ginsburg, R., 2013, Experimental Deposition of Carbonate Mud From Moving Suspensions: Importance of Flocculation and Implications For Modern and Ancient Carbonate Mud Deposition: Journal of Sedimentary Research, v. 83, p. 1025–1031.

    Google Scholar 

  • Schlager, W., 1992, Sedimentology and sequence stratigraphy of reefs and carbonate platforms: American Association of Petroleum Geologists Continuing Education Course Notes Series 34, 71 p.

    Google Scholar 

  • Schlager, W., 2005, Carbonate sedimentology and sequence stratigraphy: SEPM Concepts in Sedimentology and Paleontology #8, 200p.

    Google Scholar 

  • Scholle, P. A., Bebout, D. G., and Moore C. H., eds., 1983, Carbonate depositional environments: American Association of Petroleum Geologists Memoir 33, 708 p.

    Google Scholar 

  • Schreiber, B. C., Friedman, G. M., Decima, A., and Schreiber, E., 1976, Depositional environments of Upper Miocene (Messinian) evaporite deposits of the Sicilian Basin: Sedimentology, v. 23, p. 729–760.

    Google Scholar 

  • Scruton, P. C., 1960, Delta building and the delta sequence, in F. P. Shepard, F. B. Phleger, and T. H. van Andel, eds., Recent sediments, northwest Gulf of Mexico, American Association of Petroleum Geologists, p. 82–102.

    Google Scholar 

  • Sellwood, B. W., 1986, Shallow-marine carbonate environments, in Reading, H. G., ed., Sedimentary environments and facies, 2nd ed.: Blackwell, Oxford, p. 283–342.

    Google Scholar 

  • Smith, D. G., 1987, Meandering river point bar lithofacies models: modern and ancient examples compared, in Ethridge, F. G., Flores, R. M., and Harvey, M. D., eds., Recent developments in fluvial sedimentology: Society of Economic Paleontologists and Mineralogists Special Publication 39, p. 83–91.

    Google Scholar 

  • Smith, D. G., 1988a, Modern point bar deposits analogous to the Athabasca Oil Sands, Alberta, Canada, in de Boer, P. L., van Gelder, A., and Nio, S. D., eds., Tide-influenced sedimentary environments and facies: Reidel Publishing Co., Netherlands, p. 417–432.

    Google Scholar 

  • Smith, D. G., 1988b, Tidal bundles and mud couplets in the McMurray Formation, northeastern Alberta, Canada: Bulletin of Canadian Petroleum Geology, v. 36, p. 216–219.

    Google Scholar 

  • Smith, D. G., Reinson, G. E., Zaitlin, B. A., and Rahmani, R. A., eds., 1991, Clastic tidal sedimentology: Canadian Society of Petroleum Geologists memoir 16, 387 p.

    Google Scholar 

  • Smith, D. G., and Smith, N. D., 1980, Sedimentation in anastomosed river systems: examples from alluvial valleys near Banff, Alberta: Journal of Sedimentary Petrology, v. 50, p. 157–164.

    Google Scholar 

  • Steel, R. J., Milliken. K. L., 2013, Major advances in siliciclastic sedimentary geology, 1960–2012, in Bickford, M. E., ed., The web of geological sciences: Advances, impacts and interactions. Geol Soc Am Spec Paper 500, p. 121–167.

    Google Scholar 

  • Stow, D. A. V. and Mayall, M., 2000, Deep-water sedimentary systems: new models for the 21st century: Marine and Petroleum Geology, v. 17, p. 125–135.

    Google Scholar 

  • Swift, D. J. P., Niederoda, A. W., Vincent, C. E., and Hopkins, T. S., 1985, Barrier island evolution, middle Atlantic shelf, U.S.A. Part I: Shoreface Dynamics: Marine Geology, v. 63, p. 331–361.

    Google Scholar 

  • Talbot, M. R., and Allen, P. A., 1996, Lakes. In: Reading, H. G., ed., Sedimentary environments, processes, facies and stratigraphy, 3rd edn. Blackwell Science, Oxford, p. 83–124.

    Google Scholar 

  • Teyssen, T. A. L., 1984, Sedimentology of the Minette oolitic ironstones of Luxembourg and Lorraine: a Jurassic subtidal sandwave complex: Sedimentology, v. 31, p. 195–212.

    Google Scholar 

  • Thomas, R. G., Smith, D. G., Wood, J. M., Visser, J., Calverley-Range, E. A., and Koster, E. H., 1987, Inclined heterolithic stratification - terminology, description, interpretation and significance: Sedimentary Geology, v. 53, p. 123–179.

    Google Scholar 

  • Trabucho-Alexandre, J. 2015. More gaps than shale: erosion of mud and its effect on preserved geochemical and palaeobiological signals. in: Smith, D. G., Bailey, R. J., Burgess, P. M., and Fraser, A .J., eds., Strata and Time: Probing the Gaps in Our Understanding: Geological Society, London, Special Publications, 404, p. 251–270.

    Google Scholar 

  • Tucker, M. E., 1985, Shallow-marine carbonate facies and facies models, in Brenchley P. J., and Williams, B. P. J., eds., Sedimentology: Recent developments and applied aspects: Blackwell Scientific Publications, Oxford, p. 147–169.

    Google Scholar 

  • Van Houten, F. B., 1964, Cyclic lacustrine sedimentation, Upper Triassic Lockatong Formation, central New Jersey and adjacent Pennsylvania, in Merriam, D. F., ed. Symposium on Cyclic Sedimentation: Geological Survey of Kansas Bulletin 169, p. 495–531.

    Google Scholar 

  • Walker, R. G., 1978, Deep-water sandstone facies and ancient submarine fans: models for exploration for stratigraphic traps: American Association of Petroleum Geologists Bulletin, v. 62, p. 932–966.

    Google Scholar 

  • Walker, R. G. and James, N. P., eds., 1992, Facies models: response to sea-level change: Geological Association of Canada, 409 p.

    Google Scholar 

  • Willis, B. J., and Behrensmeyer, A. K., 1994, Architecture of Miocene overbank deposits in northern Pakistan: Journal of Sedimentary Research, v. B64, p. 60–67.

    Google Scholar 

  • Wilson, J. L., 1975, Carbonate facies in geologic history: Springer-Verlag, New York, 471 p.

    Google Scholar 

  • Wright, R., Anderson, J. B., and Fisco, P. P., 1983, Distribution and association of sediment gravity flow deposits and glacial/glacial-marine sediments around the continental margin of Antarctica, in Molnia, B. F., ed., Glacial-marine sedimentation: Plenum Press, New York, p. 265–300.

    Google Scholar 

  • Wright, V. P., ed. 1986, Paleosols: their recognition and interpretation: Blackwell Scientific Publications, Oxford, 315 p.

    Google Scholar 

  • Wright, V. P., 1992, Paleopedology, stratigraphic relationships and empirical models, in Martini, I. P., and Chesworth, W., eds., 1992, Weathering, soils and paleosols: Developments in Earth Surface Processes, No. 2, Elsevier, Amsterdam, p. 475–499.

    Google Scholar 

  • Wright, V. P., and Burchette, T. P., 1996, Shallow-water carbonate environments, in Reading, H. G., ed., Sedimentary environments: processes, facies and stratigraphy, 3rd edition: Blackwell Science, p. 325–394.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miall, A.D. (2022). Facies Models. In: Stratigraphy: A Modern Synthesis. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-87536-7_4

Download citation

Publish with us

Policies and ethics