Skip to main content

Biocontrol Potential of Microbial Consortia: Approaches in Food Security and Disease Management

  • Chapter
  • First Online:
Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management

Abstract

In the current scenario of climate change, the uncertainty of environmental factors and adverse impacts of chemical pesticides on the texture and productivity of soil along with increasing health concerns to humans appear as a global challenge in the management of agricultural yield to meet the food demand of burgeoning global populations. However, microbial consortia applied as either plant or soil inoculants have largely been used in the last few decades for the enhancement of agricultural productivity, improvement of nutrient status in the soil, improvement of fruit quality, and as biocontrol agents to control the growth of devastating phytopathogens during harvest or postharvest storage. The functional aspects of microbial consortia have been shown effective in broader ways as compared to individual cultures. Moreover, the efficiency of microbial consortia is higher due to the presence of several strains where each strain performs specific functions and shows better performance in functional behaviours in order to withstand environmental fluctuations. In this chapter, we have tried to compile the latest aspects and advancements in the development and application of microbial consortia for effective phytopathogen control so that the goals of food security could be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arenas F, Sánchez I, Hawkins SJ, Jenkins SR (2006) The invasibility of marine algal assemblages: role of functional diversity and identity. Ecology 87(11):2851–2861

    Article  PubMed  Google Scholar 

  • Audrain B, Farag MA, Ryu CM, Ghigo JM (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39:222–233

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770

    Article  CAS  Google Scholar 

  • Becker JO, Cook RJ (1988) Role of siderophores in suppression of Pythium species and production of increased-growth response of wheat by fluorescent pseudomonads. Phytopathology 78:778–782

    Article  CAS  Google Scholar 

  • Bernstein HC, Carlson RP (2012) Microbial consortia engineering for cellular factories: in vitro to in silico systems. Comput Struct Biotechnol J 3(4):e201210017

    Article  PubMed  PubMed Central  Google Scholar 

  • Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26(9):483–489

    Article  CAS  PubMed  Google Scholar 

  • Choure K, Dubey RC (2012) Development of plant growth promoting microbial consortium based on interaction studies to reduce wilt incidence in Cajanus cajan L. var. Manak. World J Agric Sci 8(1):118–128

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Souza JT, Weller DM, Raaijmakers JM (2003) Frequency, diversity and activity of 2,4-diacetylphloroglucinol producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. Phytopathology 93:54–63

    Article  PubMed  Google Scholar 

  • Devi AR, Sharma GD, Majumdar PB, Pandey P (2018) A multispecies consortium of bacteria having plant growth promotion and antifungal activities, for the management of Fusarium wilt complex disease in potato (Solanum tuberosum L.). Biocatal Agric Biotechnol 16:614–624

    Article  Google Scholar 

  • Drubin DA, Way JC, Silver PA (2007) Designing biological systems. Genes Dev 21(3):242–254

    Article  CAS  PubMed  Google Scholar 

  • Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy BK, Weller DM (1995) Use of Gaeumannomyces graminis var. graminis alone and in combination with fluorescent Pseudomonas spp. to suppress take-all of wheat. Plant Dis 79:907–911

    Article  Google Scholar 

  • Dutta S, Mishra AK, Kumar BD (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40(2):452–461

    Article  CAS  Google Scholar 

  • Eiteman MA, Lee SA, Altman E (2008) A co-fermentation strategy to consume sugar mixtures effectively. J Biol Eng 2(1):3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Endy D (2005) Foundations for engineering biology. Nature 438:449–453

    Article  CAS  PubMed  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 67–109

    Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500

    Google Scholar 

  • Guo JH, Zhang L, Wang D, Hu Q, Dai X, Xie Y, Li Q, Liu H (2019) Consortium of plant growth-promoting Rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota. Front Microbiol 10:1668

    Article  PubMed  PubMed Central  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Li GQ, Zhang J, Yang L, Che HJ, Jiang DH, Huang HC (2011) Control of postharvest botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology 101(7):859–869

    Article  CAS  PubMed  Google Scholar 

  • Husson E, Hadad C, Huet G, Laclef S, Lesur D, Lambertyn V, Jamali A, Gottis S, Sarazin C, Van Nhien AN (2017) The effect of room temperature ionic liquids on the selective biocatalytic hydrolysis of chitin via sequential or simultaneous strategies. Green Chem 19:4122–4131

    Article  CAS  Google Scholar 

  • Istifadah N, Fatiyah N, Fitriatin BN, Djaya L (2019) Effects of dosage and application frequency of microbial consortium mixed with animal manure on bacterial wilt and late blight diseases of potato. In: IOP conference series: earth and environmental science, vol 334. IOP, Bristol, p 012038

    Google Scholar 

  • Jain A, Singh A, Singh BN, Singh S, Upadhyay RS, Sarma BK, Singh HB (2013) Biotic stress management in agricultural crops using microbial consortium. In: Bacteria in agrobiology: disease management. Springer, Berlin, Heidelberg, pp 427–448

    Chapter  Google Scholar 

  • Jain A, Singh A, Singh S, Singh V, Singh HB (2015) Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum. J Plant Physiol 182:79–94

    Article  CAS  PubMed  Google Scholar 

  • James DEEPA, Mathew KS (2015) Evaluation of endophytic microbial consortium for the management of bacterial wilt of tomato caused by Ralstonia solanacearum. J Biol Control 29:148–156

    Article  Google Scholar 

  • Johnson I, Ramjegathesh R, Sheela J, Shoba N, Maheshwarappa HP (2017) Development of microbial consortia for the management of leaf blight disease of coconut. Acta Phytopathol Entomol Hung 52(1):1–14

    Article  CAS  Google Scholar 

  • Kamalnath M, Rao MS, Umamaheswari R (2019) Rhizophere engineering with beneficial microbes for growth enhancement and nematode disease complex management in gherkin (Cucumis anguria L.). Sci Hortic 257:108681

    Article  CAS  Google Scholar 

  • Kavitha K, Nakkeeran S, Chandrasekar G, Fernando WGD, Mathiyazhagan S, Renukadevi P, Krishnamoorthy AS (2003) Role of antifungal antibiotics, siderophores and IAA production in biocontrol of Pythium aphanidermatum inciting damping off in tomato by Pseudomonas chlororaphis and Bacillus subtilis. In: Proceedings of the 6th International workshop on PGPR. IISR, pp 493–497

    Google Scholar 

  • Kavitha K, Nakkeeran S, Chandrasekar G (2012) Rhizobacterial-mediated induction of defense enzymes to enhance the resistance of turmeric (Curcuma longa L) to Pythium aphanidermatum causing rhizome rot. Arch Phytopathol Plant Prot 45(2):199–219

    Article  CAS  Google Scholar 

  • Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258

    Article  CAS  PubMed  Google Scholar 

  • Khan P, Bora LC, Borah PK, Bora P, Talukdar K (2018) Efficacy of microbial consortia against bacterial wilt caused by Ralstonia solanacearum in hydroponically grown lettuce plant. Int J Curr Microbiol App Sci 7(6):3046–3055

    Article  CAS  Google Scholar 

  • Kumar A, Vandana SR, Singh M, Pandey KD (2015) Plant growth promoting rhizobacteria (PGPR): a promising approach for disease management. In: Singh JS, Singh DP (eds) Microbes and environmental management. Studium Press, New Delhi, pp 195–209

    Google Scholar 

  • Kumar A, Singh VK, Tripathi V, Singh PP, Singh AK (2018) Plant growth-promoting rhizobacteria (PGPR): perspective in agriculture under biotic and abiotic stress. In: Crop improvement through microbial biotechnology. Elsevier, Amsterdam, pp 333–342

    Google Scholar 

  • LaPara TM, Zakharova T, Nakatsu CH, Konopka A (2002) Functional and structural adaptations of bacterial communities growing on particulate substrates under stringent nutrient limitation. Microb Ecol 44(4):317–326

    Article  CAS  PubMed  Google Scholar 

  • Lee KJ, Oh BT, Seralathan KK (2013) Advances in plant growth promoting rhizobacteria for biological control of plant diseases. In: Maheshwari D (ed) Bacteria in agrobiology: disease management. Springer, Berlin, Heidelberg, pp 1–13

    Google Scholar 

  • Malathi S (2019) Management of root rot disease in French beans (Phaseolus vulgaris) by using microbial consortium. Int J Plant Sci 14(1):28–32

    Article  Google Scholar 

  • Marguet P, Balagadde F, Tan C, You L (2007) Biology by design: reduction and synthesis of cellular components and behaviour. J Royal Soc Int 4(15):607–623

    Article  CAS  Google Scholar 

  • Mathiyazhagan S, Kavitha K, Nakkeeran S, Chandrasekar G, Manian K, Renukadevi P, Krishnamoorthy AS, Fernando WGD (2004) PGPR mediated management of stem blight of Phllanthus amarus (Schum and Thonn) caused by Corynespora cassiicola (Berk and Curt) Wei. Arch Phytopathol Plant Prot 37:183–199

    Article  CAS  Google Scholar 

  • Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11(4):844–854

    Article  CAS  PubMed  Google Scholar 

  • Mouyna I, Hartl L, Latgé JP (2013) β-1, 3-glucan modifying enzymes in Aspergillus fumigatus. Front Microbiol 4:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasir Hussein A, Abbasi S, Sharifi R, Jamali S (2018) The effect of biocontrol agents consortia against Rhizoctonia root rot of common bean Phaseolus vulgaris. J Crop Prot 7(1):73–85

    Google Scholar 

  • Neiendam-Nielsen M, Sørensen J (1999) Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol Ecol 30:217–227

    Article  CAS  PubMed  Google Scholar 

  • Pelaez F (2006) The historical delivery of antibiotics from microbial natural products—can history repeat? Biochem Pharmacol 71(7):981–990

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antoine Van Leeuwenhoek 81:537–547

    Article  CAS  Google Scholar 

  • Ram RM, Tripathi R, Birla H, Dilnashin H, Singh SP, Keswani C (2019) Mixed PGPR consortium: an effective modulator of antioxidant network for management of collar rot in cauliflower. Arch Phytopathol Plant Prot 52(7–8):844–862

    Article  CAS  Google Scholar 

  • Raza W, Faheem M, Yousaf S, Rajer FU, Yamin M (2013) Volatile and nonvolatile antifungal compounds produced by Trichoderma harzianum SQR-T037 suppressed the growth of Fusarium oxysporum f. sp. Niveum. Sci Lett 1:21–24

    Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943

    Article  CAS  PubMed  Google Scholar 

  • Sadfi N, Cherif M, Fliss I, Boudabbous A, Antoum H (2001) Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. J Plant Pathol 83:101–117

    CAS  Google Scholar 

  • Sahu G, Sindhu S (2011) Disease control and plant growth promotion of green gram by siderophore producing Pseudomonas sp. Res J Microbiol 6:735–749

    Article  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MDC, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of bacillus and pseudomonas: a review. Biocontrol Sci Tech 22(8):855–872

    Article  Google Scholar 

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33

    Article  CAS  Google Scholar 

  • Schalchli H, Hormazabal E, Becerra J, Birkett M, Alvear M, Vidal J, Quiroz A (2011) Antifungal activity of volatile metabolites emitted by mycelial cultures of saprophytic fungi. Chem Ecol 27(6):503–513

    Article  CAS  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24(4):814–842

    Article  CAS  PubMed  Google Scholar 

  • Senthilraja G, Anand T, Durairaj C, Kennedy JS, Suresh S, Raguchander T, Samiyappan R (2010) A new microbial consortia containing entomopathogenic fungus, Beauveria bassiana and plant growth promoting rhizobacteria, Pseudomonas fluorescens for simultaneous management of leafminers and collar rot disease in groundnut. Biocontrol Sci Tech 20(5):449–464

    Article  Google Scholar 

  • Singh A, Mehta S, Singh HB, Nautiyal CS (2003) Biocontrol of collar rot disease of betelvine (Piper betle L.) caused by Sclerotium rolfsii by using rhizosphere-competent Pseudomonas fluorescens NBRI-N6 and P. fluorescens NBRI-N. Curr Microbiol 47(2):0153–0158

    Article  CAS  Google Scholar 

  • Singh VK, Singh AK, Kumar A (2017) Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech 7(4):255

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh M, Singh D, Gupta A, Pandey KD, Singh PK, Kumar A (2019) Plant growth promoting rhizobacteria: application in biofertilizers and biocontrol of phytopathogens. In: PGPR amelioration in sustainable agriculture. Woodhead Publishing, Cambridge, pp 41–66

    Chapter  Google Scholar 

  • Srinivasan K, Mathivanan N (2009) Biological control of sunflower necrosis virus disease with powder and liquid formulations of plant growth promoting microbial consortia under field conditions. Biol Control 51(3):395–402

    Article  Google Scholar 

  • Srinivasan K, Mathivanan N (2011) Plant growth promoting microbial consortia mediated classical biocontrol of sunflower necrosis virus disease. J Biopest 4(1):65

    Google Scholar 

  • Süel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB (2006) An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440(7083):545–550

    Article  PubMed  CAS  Google Scholar 

  • Sundaramoorthy S, Karthiba L, Raguchander T, Samiyappan R (2013) Ecofriendly approaches of potential microbial bioagents in management of sheath rot disease in rice caused by Sarocladium oryzae (Sawada). Plant Pathol J 12(2):98–103

    Article  Google Scholar 

  • Suryadi Y, Susilowati D, Riana E, Mubarik NR (2013) Management of rice blast disease (Pyricularia oryzae) using formulated bacterial consortium. Emir J Food Agric 25:349–357

    Article  Google Scholar 

  • Taha MDM, Jaini MFM, Saidi NB, Rahim RA, Shah UKM, Hashim AM (2019) Biological control of Erwinia mallotivora, the causal agent of papaya dieback disease by indigenous seed-borne endophytic lactic acid bacteria consortium. PLoS One 14(12):e0224431

    Article  CAS  Google Scholar 

  • Thakkar A, Saraf M (2015) Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine max L. Arch Phytopathol Plant Prot 48(6):459–474

    Article  Google Scholar 

  • Wan M, Li G, Zhang J, Jiang D, Huang HC (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control 46(3):552–559

    Article  Google Scholar 

  • Wang B, Yuan J, Zhang J, Shen Z, Zhang M, Li R, Ruan Y, Shen Q (2013) Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of fusarium wilt of banana. Biol Fertil Soils 49(4):435–446

    Article  Google Scholar 

  • Wegst-Uhrich SR, Navarro DAG, Zimmerman L, Aga DS (2014) Assessing antibiotic sorption in soil: a literature review and new case studies on sulfonamides and macrolides. Chem Cent J 8:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong CKF, Saidi NB, Vadamalai G, Teh CY, Zulperi D (2019) Effect of bioformulations on the biocontrol efficacy, microbial viability and storage stability of a consortium of biocontrol agents against Fusarium wilt of banana. J Appl Microbiol 127(2):544–555

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Zang H, Wu H, Uddin Rajer F, Gao X (2018) Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. Oryzae. Mol Plant Pathol 19(1):49–58

    Article  CAS  PubMed  Google Scholar 

  • Yeh BJ, Lim WA (2007) Synthetic biology: lessons from the history of synthetic organic chemistry. Nat Chem Biol 3:521–525

    Article  CAS  PubMed  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56(1–2):17–34

    Article  CAS  PubMed  Google Scholar 

  • Zhimo VY, Biasi A, Kumar A, Feygenberg O, Salim S, Vero S, Wisniewski M, Droby S (2020) Yeasts and bacterial consortia from kefir grains are effective biocontrol agents of postharvest diseases of fruits. Microorganisms 8(3):42

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, H., Kant, C., Singh, S.K., White, J.F., Kumar, A., Droby, S. (2022). Biocontrol Potential of Microbial Consortia: Approaches in Food Security and Disease Management. In: Kumar, A. (eds) Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87512-1_7

Download citation

Publish with us

Policies and ethics