Skip to main content

Host-Induced Gene Silencing: Approaches in Plant Disease Management

  • Chapter
  • First Online:
Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management

Abstract

Crops exposed to the damage of various biotic and abiotic sources result in reduced yields and cause economic losses. There are prominent strategies such as breeding for improved resistance, the application of pesticides, and cultural practices that are available to mitigate damage resulting from abiotic/biotic sources. Genetic engineering suggests a new technique “host-induced gene silencing (HIGS)” which is a promising approach to the control of different negative biotic to abiotic stress factors affecting the plants. HIGS is a creative idea using RNA interference (RNAi) technology as an efficient strategy to control plant pathogens. These techniques involve shutting off one or few of the important genes playing role in pathogenesis that are related to pathogen growth, development, and /or the host genes responsible for invasion. In general, HIGS utilizes RNAi molecules generated by the plant, which then target the key genes of pathogens resulting in resistance formation. RNAi technology suggests a new insight by using small non-coding RNA sequences able to switch-off gene expression (blocking gene function) relied on introducing the sequence-specific technique. Inserting short sequences of RNA, which partly match the target gene’s sequence, contributes to the silence of the target-oriented proteins on the plant. Therefore, it suppresses a specific gene, eliminating or enhancing certain plant traits for the purpose of different know-how agro-biotechnological aspects. RNAi causes biochemical or phenotypic differentiation for generating new quality traits in the organisms. It has an important potential paves way for the control of pests and diseases. In this chapter, we will highlight the application of RNAi in the plant system to explore the novel traits for the better management of current problems related to plant cultivation involving abiotic stress, biotic stress, and plant disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (2005) Plant pathology, 5th edn. Academic Press, New York. ISBN 0120445654

    Google Scholar 

  • Ali Z, Ali S, Tashkandi M, Zaidi SS, Mahfouz MM (2016) CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep 6:26912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ammara U, Mansoor S, Saeed M, Amin I, Briddon RW, Al-Sadi AM (2015) RNA interference-based resistance in transgenic tomato plants against tomato yellow leaf curl virus-Oman (TYLCV-OM) and its associated betasatellite. Virol J 12(1):1–12

    Article  CAS  Google Scholar 

  • Andika BI, Kondo H, Tamada T (2005) Evidence that RNA silencing-mediated resistance to beet necrotic yellow vein virus is less effective in roots than in leaves. MPMI 18:194–204

    Article  CAS  PubMed  Google Scholar 

  • Aragao FJL (2014) GM plants with RNAi-golden mosaic resistant bean. BMC Proc 8(4):1–2

    Google Scholar 

  • Arias RS, Dang PM, Sobolev VS (2015) RNAi-mediated control of aflatoxin in peanut: method to analyze mycotoxin production and transgene expression in the peanut/aspergillus pathosystem. J Vis Exp 106:e53398

    Google Scholar 

  • Bühler M, Moazed D (2007) Transcription and RNAi in heterochromatic gene silencing. Nat Struct Mol Biol 14(11):1041–1048

    Article  PubMed  CAS  Google Scholar 

  • Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H (2018a) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Q, Liang C, Wang S, Hou Y, Gao L, Liu L, He W, Ma W, Mo B, Chen X (2018b) The disease resistance protein SNC1 represses the biogenesis of microRNAs and phased siRNAs. Nat Commun 9:5080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canto-Pastor A, Santos BAMC, Valli AA, Summers W, Schornack S, Baulcombe DC (2019) Enhanced resitance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. Proc Natl Acad Sci U S A 116:2755–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao M et al (2014) Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. Proc Natl Acad Sci U S A 111:14613–14618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen W, Kastner C, Nowara D, Oliveira-Garcia E, Rutten T, Zhao Y, Deising HB, Kumlehn J, Schweizer P (2016) Host-induced silencing of Fusarium culmorum genes protects wheat from infection. J Exp Bot 67:4979–4991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng W, Song XS, Li HP, Cao LH, Sun K, Qiu XL, Xu YB, Yang P, Huang T, Zhang JB, Qu B, Liao YC (2015) Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to fusarium head blight and seedling blight in wheat. Plant Biotechnol J 13:1335–1345

    Article  CAS  PubMed  Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644

    Article  CAS  PubMed  Google Scholar 

  • Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8(8):380–386

    Google Scholar 

  • Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci 98(23):13437–13442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806

    Article  CAS  PubMed  Google Scholar 

  • Fritz JH, Girardin SE, Philpott DJ (2006) Innate immune defense through RNA interference. Sci STKE 339:pe27. https://doi.org/10.1126/stke.3392006pe27

    Article  Google Scholar 

  • Ghag Siddhesh B (2017) Host induced gene silencing, an emerging science to engineer crop resistance against harmful plant pathogens. Physiol Mol Plant Pathol 100:242–254

    Article  Google Scholar 

  • Govindarajulu M, Epstein L, Wroblewski T, Michelmore RW (2015) Host-induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce. Plant Biotechnol J 13(7):875–883

    Article  CAS  PubMed  Google Scholar 

  • Guo N et al (2018) Resistance to Phytophthora pathogens is dependent on gene silencing pathways in plants. J Phytopathol 166:379–385

    Article  CAS  Google Scholar 

  • Guo Z et al (2019) Small RNA-based antimicrobial immunity. Nat Rev Immunol 19:31–44

    Article  CAS  PubMed  Google Scholar 

  • Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293(5532):1146–1150

    Article  CAS  PubMed  Google Scholar 

  • Hernández I, Borrás O, Chacón O, Pujol M, López Y, Rodrígues R, Portieles R (2010) Demonstration by RNA interference of a new molecular mechanism for resistance to an oomycete in tobacco plants. Biotecnol Apl 27(3):242–244

    Google Scholar 

  • Hily JM, Ravelonandro M, Damsteegt V, Basset C, Petri C, Zongrang Liu Z, Scorza R (2007) Plum pox virus coat protein gene intron-hairpin-RNA (ihpRNA) constructs provide resistance to plum pox virus in Nicotiana benthamiana and Prunus domestica. J Am Soc Hort Sci 132(6):850–858

    Article  CAS  Google Scholar 

  • Hou Y et al (2019) A Phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host Microbe 25:153–165

    Article  CAS  PubMed  Google Scholar 

  • Huot B et al (2014) Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7:1267–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahan SN, Åsman AK, Corcoran P, Fogelqvist J, Vetukuri RR, Dixelius C (2015) Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. J Exp Bot 66(9):2785–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nat Plants 1(10):1–4

    Article  CAS  Google Scholar 

  • Jiang CJ, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M, Sugano S, Takatsuji H (2009) Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant Microbe 22:820–829

    Article  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalantidis K, Schumacher HT, Alexiadis T, Helm JM (2008) RNA silencing movement in plants. Biol Cell 100(1):13–26

    Article  CAS  PubMed  Google Scholar 

  • Kang L, Yuh-Shuh W, Srinivasa RU, Keri W, Yuhong T, Vatsala V, Barney JV, Kent DC, Elison BB, Kirankumar SM (2008) Overexpression of a fatty acid amide hydrolase compromises innate immunity in Arabidopsis. Plant J 56:336–349

    Article  CAS  PubMed  Google Scholar 

  • Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59(1):85–92

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Betel D, Miller ML, Sander C, Leslie CS, Marks DS (2009) Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol 27:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatri M, Rajam MV (2007) Targeting polyamines of aspergillus nidulans by siRNA specific to fungal ornithine decarboxylase gene. Med Mycol 45:211–220

    Article  CAS  PubMed  Google Scholar 

  • Khmel IA, Sorokina TA, Lemanova NB, Lipasova VA, Metlitski OZ, Burdeinaya TV, Chernin LS (1998) Biological control of crown gall in grapevine and raspberry by two Pseudomonas spp. with a wide spectrum of antagonistic activity. Biocontrol Sci Tech 8(1):45–57

    Article  Google Scholar 

  • Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–178

    Article  CAS  PubMed  Google Scholar 

  • Knip M, Constantin ME, Thordal-Christensen H (2014) Trans-kingdom cross-talk: small RNAs on the move. PLoS Genet 10(9):e1004602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kyndt T, Ji H, Vanholme B, Gheysen G (2013) Transcriptional silencing of RNAi constructs against nematode genes in Arabidopsis. Nematology 15(5):519–528

    Article  CAS  Google Scholar 

  • Lacomme C, Shaw J, Hein I, Barciszewska-Pacaka M, Hrubikova K, Shirasub K, Moln Arc A, Burgyanc J (2006) Virus-induced gene silencing: mechanisms and applications. Scottish Crop Research Institute, Dundee, p 24

    Google Scholar 

  • Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Baker B (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci 109(5):1790–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Z, Dongxia H, Xi C, Donghai L, Lingyun Z, Yujing Z, Jing L, Zhen B, Xiangying L, Xing C (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126

    Article  CAS  Google Scholar 

  • Liu L, Chen X (2018) Intercellular and systemic trafficking of RNAs in plants. Nat Plants 4:869–878

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J et al (2014) The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. PLoS Genet 10:e1004755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Machado AK, Brown NA, Urban M, Kanyuka K, Hammond-Kosack KE (2018) RNAi as an emerging approach to control fusarium head blight disease and mycotoxin contamination in cereals. Pest Manag Sci 74(4):790–799

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Matzke AJ, Pruss GJ, Vance VB (2001) RNA-based silencing strategies in plants. Curr Opin Genet Dev 11(2):221–227

    Article  CAS  PubMed  Google Scholar 

  • Medina-Hernandez D, Rivera-Bustamante R, Tenllado F, Holguín-Pena RJ (2013) Effects and effectiveness of two RNAi constructs for resistance to pepper golden mosaic virus in Nicotiana benthamiana plants. Viruses 5:2931–2945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mermigka G, Verret F, Kalantidis K (2006) RNA silencing movement in plants. Rev Cell Biol Mol Med 1(3):96–129

    Google Scholar 

  • Micali CO et al (2011) Biogenesis of a specialized plant–fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13:210–226

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj S, Senthil-Kumar M, Ramu VS, Wang K, Mysore KS (2016) Plant ribosomal proteins, RPL12 and RPL19, play a role in nonhost disease resistance against bacterial pathogens. Front Plant Sci 6:1192

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro L et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Panwar V, McCallum B, Bakkeren G (2013) Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by barley stripe mosaic virus. Plant Mol Biol 81:595–608

    Article  CAS  PubMed  Google Scholar 

  • Prins M, De Oliveira RR, Anker C, van Schepen A, de Haan P, Goldbach R (1996) Engineered RNA-mediated resistance to tomato spotted wilt virus is sequence specific. MPMI 9:416–418

    Article  CAS  PubMed  Google Scholar 

  • Pyott DE, Sheehan E, Molnar A (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 17:1276–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao Y, Liu L, Xiong Q, Flores C, Wong J, Shi J, Ma W (2013) Oomycete pathogens encode RNA silencing suppressors. Nat Genet 45(3):330–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratcliff F, Martin-Hernandez AMD, Baulcombe C (2001) Technical advance: tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245

    Article  CAS  PubMed  Google Scholar 

  • Rosa C et al (2018) RNA interference mechanisms and applications in plant pathology. Annu Rev Phytopathol 56:581–610

    Article  CAS  PubMed  Google Scholar 

  • Scorza R, Callahn A, Levy L, Damsteegt V, Webb K, Ravelonandro M (2001) Post-transcriptional gene silencing in plum pox virus resistant European plum containing the plum pox potyvirus coat protein gene. Transgenic Res 10:201–209

    Article  CAS  PubMed  Google Scholar 

  • Seemanpillai M, Dry I, Randles J, Rezaian A (2003) Transcriptional silencing of geminiviral promoter-driven transgenes following homologous virus infection. Mol Plant Microbe Interact 16(5):429–438

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Lee HK, Mysore KS (2013) VIGS-mediated forward genetics screening for identification of genes involved in nonhost resistance. J Vis Exp (78):e51033

    Google Scholar 

  • Shekhawat UK, Ganapathi TR, Hadapad AB (2012) Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. J Gen Virol 93(8):1804–1813

    Article  CAS  PubMed  Google Scholar 

  • Sigoillot FD, King RW (2011) Vigilance and validation: keys to success in RNAi screening. ACS Chem Biol 6(1):47–60

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Thomma BPHJ (2016) Host-induced gene silencing compromises Verticillium wilt in tomato and Arabidopsis. Mol Plant Pathol 19:77–89. https://doi.org/10.1101/076976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tierney MB, Lamour KH (2005) An introduction to reverse genetic tools for investigating gene function. Plant Health Instruct. https://doi.org/10.1094/PHI-A-2005-1025-01.4

  • Tinoco MLP, Dias BB, Dall'Astta RC, Pamphile JA, Aragão FJ (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8(1):1–11

    Article  CAS  Google Scholar 

  • Vaucheret H, Fagard M (2001) Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet 17(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Béclin C, Fagard M (2001) Post-transcriptional gene silencing in plants. J Cell Sci 114(17):3083–3091

    Article  CAS  PubMed  Google Scholar 

  • Velasquez AC, Chakravarthy S, Martin GB (2009) Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. J Vis Exp 28:1292

    Google Scholar 

  • Vincelli P (2016) Genetic engineering and sustainable crop disease management: opportunities for case-by-case decision-making. Sustainability 8(5):495

    Article  Google Scholar 

  • Wagh SG et al (2016) Analysis of rice RNAdependent RNA polymerase 6 (OsRDR6) gene in response to viral, bacterial and fungal pathogens. J Gen Plant Pathol 82:12–17

    Article  CAS  Google Scholar 

  • Wang M, Jin H (2017) Spray-induced gene silencing: a powerful innovative strategy for crop protection. Trends Microbiol 25(1):4–6

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Soyano T, Machida S, Yang JY, Jung C, Chua NH, Yuan YA (2011) Molecular insights into plant cell proliferation disturbance by agrobacterium protein 6b. Genes Dev 25(1):64–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Weiberg A, Mao Lin F, Thomma BPHJ, Huang H, Jin H (2016) Bidirectional cross-kingdom Rnai and fungal uptake of external Rnas confer plant protection. Nat Plants 2:16151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411(6839):834–842

    Article  CAS  PubMed  Google Scholar 

  • Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579(26):5982–5987

    Article  CAS  PubMed  Google Scholar 

  • Wong J et al (2014) Roles of small RNAs in soybean defense against Phytophthora sojae infection. Plant J 79:928–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu XM, Yang CQ, Mao YB, Wang LJ, Shangguan XX, Chen XY (2016) Targeting insect mitochondrial complex I for plant protection. Plant Biotechnol J 14(9):1925–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia R, Meyers BC, Liu Z, Beers EP, Ye S, Liua Z (2013) MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA biogenesis in eudicots. Plant Cell 25:1555–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Chretien R, Ye J, Rommens CM (2006) New construct approaches for efficient gene silencing in plants. Plant Physiol 141(4):1508–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan P, Shen W, Gao X, Li X, Zhou P, Duan J (2012) High-throughput construction of intron-containing hairpin RNA vectors for RNAi in plants. PLoS One 7(5):e38186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin C, Hulbert S (2015) Host induced gene silencing (HIGS), a promising strategy for developing disease resistant crops. Gene Technol 4(130):10–4172

    Google Scholar 

  • Yin C, Jurgenson JE, Hulbert SH (2011) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant Microbe Interact 24:554–561

    Article  CAS  PubMed  Google Scholar 

  • Yin C, Ramachandran SR, Zhai Y, Bu C, Pappu HR, Hulbert SH (2019) A novel fungal effector from Puccinia graminis suppressing RNA silencing and plant defense responses. New Phytol 222:1561–1572

    Article  CAS  PubMed  Google Scholar 

  • Younis A, Siddique MI, Kim CK, Lim KB (2014) RNA interference (RNAi) induced gene silencing: a promising approach of hi-tech plant breeding. Int J Biol Sci 10(10):1150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaidi SSEA, Tashkandi M, Mansoor S, Mahfouz MM (2016) Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance. Front Plant Sci 7:1673

    Article  PubMed  PubMed Central  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Zhai J, Jeong DH, Paoli ED, Park S, Rosen BD, Li Y, Gonzalez AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Wang Q, Xu K, Meng Y, Quan J, Shan W (2011a) Production of dsRNA sequences in the host plant is not sufficient to initiate gene silencing in the colonizing oomycete pathogen Phytophthora parasitica. PLoS One 6(11):e28114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Sato S, Ye X, Dorrance AE, Morris TJ, Clemente TE, Qu F (2011b) Robust RNAi-based resistance to mixed infection of three viruses in soybean plants expressing separate short hairpins from a single transgene. Phytopathology 101(11):1264–1269

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ, Fang YY, Hua CL, Ding SW, Guo HS (2016) Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plants 2:16153

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Khan SA, Heckel DG, Bock R (2017) Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends Biotechnol 35(9):871–882

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Jia Y, Shi J, Chen C, Ye W, Wang Y, Ma W, Qiao Y (2019) The WY domain in the Phytophthora effector PSR1 is required for infection and RNA silencing suppression activity. New Phytol 223:839–852

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Bailey A, Niblett CL, Qu R (2016) Control of brown patch (Rhizoctonia solani) in tall fescue (Festuca arundinacea Schreb.) by host induced gene silencing. Plant Cell Rep 35(4):791–802

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kubilay Kurtulus Bastas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baysal, Ö., Bastas, K.K. (2022). Host-Induced Gene Silencing: Approaches in Plant Disease Management. In: Kumar, A. (eds) Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87512-1_2

Download citation

Publish with us

Policies and ethics