Skip to main content

Abstract

Plant-microbe interactions are inevitable and determine whether the relationship is beneficial or pathogenic. Microbes secrete proteins that establish virulence and pathogenicity as well as proteins that exert a positive role in plant resistance development. Certain glycoproteins produced by microbes are identified to act as microbial signatures that activate plant innate immunity. Flagellin, cold shock proteins, elongation factor thermo unstable (EF-TU) peptides, and several other proteins produced by microbes are found to trigger plant resistance via the salicylic acid pathway. Likewise, lipopolysaccharides produced by certain beneficial microbes are found to trigger plant resistance against biotic stress via the jasmonic acid or ethylene pathway. Harpin proteins establish a strong amplified version of immunity, viz., systemic acquired resistance, and offer beneficial multifunctional effects to plants. Similarly, viral proteins, including coat and nuclear proteins, can contribute to resistance against viral plant diseases. Perception of microbial elicitors occurs via plant cell surface receptors which induce altered ion flux across the plasma membrane leading to alkalization, ROS accumulation, hormone signalling, and activation of defense genes and enzymes. These signalling responses initiated by microbial proteins can establish disease resistance in plants. This chapter illustrates various molecular mechanisms of defensive action by microbial protein elicitors in plants and also provides knowledge for the development of microbial protein-based smart biocontrol agents in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi S, Safaie N, Sadeghi A, Shamsbakhsh M (2019) Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms. Front Microbiol 10:1505

    Article  PubMed  PubMed Central  Google Scholar 

  • Abd El-Rahim WM, Moawad H, Azeiz AZA, Sadowsky MJ (2017) Optimization of conditions for decolorization of azo-based textile dyes by multiple fungal species. J Biotechnol 260:11–17

    Article  CAS  PubMed  Google Scholar 

  • Abdul Malik NA, Kumar IS, Nadarajah K (2020) Elicitor and receptor molecules: orchestrators of plant defense and immunity. Int J Mol Sci 21(3):963

    Article  CAS  PubMed Central  Google Scholar 

  • Abo-Zaid GA, Matar SM, Abdelkhalek A (2020) Induction of plant resistance against tobacco mosaic virus using the biocontrol agent Streptomyces cellulosae isolate Actino 48. Agronomy 10(11):1620

    Article  CAS  Google Scholar 

  • Ádám AL, Nagy ZÁ, Kátay G, Mergenthaler E, Viczián O (2018) Signals of systemic immunity in plants: progress and open questions. Int J Mol Sci 19(4):1146

    Article  PubMed Central  CAS  Google Scholar 

  • Albert M (2013) Peptides as triggers of plant defence. J Exp Bot 64(17):5269–5279

    Article  CAS  PubMed  Google Scholar 

  • Allan AC, Lapidot M, Culver JN, Fluhr R (2001) An early tobacco mosaic virus-induced oxidative burst in tobacco indicates extracellular perception of the virus coat protein. Plant Physiol 126(1):97–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ao Y, Li Z, Feng D, Xiong F, Liu J, Li JF, Wang M, Wang J, Liu B, Wang HB (2014) Os CERK 1 and Os RLCK 176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. Plant J 80(6):1072–1084

    Article  CAS  PubMed  Google Scholar 

  • Arlat M, Van Gijsegem F, Huet J, Pernollet J, Boucher C (1994) PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J 13(3):543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attaran E, Zeier TE, Griebel T, Zeier J (2009) Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21(3):954–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker CJ, Orlandi EW, Mock NM (1993) Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol 102(4):1341–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar M, Sharfman M, Ron M, Avni A (2010) BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J 63(5):791–800

    Article  CAS  PubMed  Google Scholar 

  • Bar M, Sharfman M, Avni A (2011) LeEix1 functions as a decoy receptor to attenuate LeEix2 signaling. Plant Signal Behav 6(3):455–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    Article  CAS  PubMed  Google Scholar 

  • Bauer DW, Wei Z-M, Beer SV, Collmer A (1995) Erwinia chrysanthemi Harpin~ E~ c~ h: an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol Plant-Microbe Interact 8:484–484

    Article  CAS  PubMed  Google Scholar 

  • Benschop JJ, Mohammed S, O’Flaherty M, Heck AJ, Slijper M, Menke FL (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6(7):1198–1214

    Article  CAS  PubMed  Google Scholar 

  • Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Biol 46(1):189–214

    Article  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Bonas U, Lahaye T (2002) Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition. Curr Opin Microbiol 5(1):44–50

    Article  CAS  PubMed  Google Scholar 

  • Boter M, Amigues B, Peart J, Breuer C, Kadota Y, Casais C, Moore G, Kleanthous C, Ochsenbein F, Shirasu K (2007) Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19:3791–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brito N, Espino JJ, González C (2006) The endo-β-1, 4-xylanase Xyn11A is required for virulence in Botrytis cinerea. Mol Plant-Microbe Interact 19(1):25–32

    Article  CAS  PubMed  Google Scholar 

  • Brunner F, Rosahl S, Lee J, Rudd JJ, Geiler C, Kauppinen S, Rasmussen G, Scheel D, Nürnberger T (2002) Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J 21(24):6681–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai R, Lewis J, Yan S, Liu H, Clarke CR, Campanile F, Almeida NF, Studholme DJ, Lindeberg M, Schneider D (2011) The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathog 7(8):e1002130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan D (2020) Harpin protein plant elicitor for cannabis. https://agfuse.com/article/harpin-protein-plant-elicitor-for-cannabis#:~:text=Elicitor%20For%20Cannabis-,Usually%2C%20Harpin%20Protein%20acted%20as%20a%20plant%20health%20promoter%20activates,trigger%20an%20early%20warning

  • Charkowski AO, Alfano JR, Preston G, Yuan J, He SY, Collmer A (1998) The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol 180(19):5211–5217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G-Y, Zhang B, Wu X-M, Zhao M-Q (2005) Cloning and characterization of an harpin-encoding gene from Xanthomonas axonopodis pv. glycines required for hypersensitive response on nonhost plant tobacco. Wei Sheng Wu Xue Bao 45(4):496–499

    CAS  PubMed  Google Scholar 

  • Chen L, Zhang S-J, Zhang S-S, Qu S, Ren X, Long J, Yin Q, Qian J, Sun F, Zhang C (2008) A fragment of the Xanthomonas oryzae pv. oryzicola harpin HpaGXooc reduces disease and increases yield of rice in extensive grower plantings. Phytopathology 98(7):792–802

    Article  PubMed  Google Scholar 

  • Chen X-L, Shi T, Yang J, Shi W, Gao X, Chen D, Xu X, Xu J-R, Talbot NJ, Peng Y-L (2014) N-glycosylation of effector proteins by an α-1, 3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity. Plant Cell 26(3):1360–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q-F, Xu L, Tan W-J, Chen L, Qi H, Xie L-J, Chen M-X, Liu B-Y, Yu L-J, Yao N (2015) Disruption of the Arabidopsis defense regulator genes SAG101, EDS1, and PAD4 confers enhanced freezing tolerance. Mol Plant 8(10):1536–1549

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Lin B, Huang Q, Hu L, Zhuo K, Liao J (2017) A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism. PLoS Pathog 13(4):e1006301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JD, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448(7152):497–500

    Article  CAS  PubMed  Google Scholar 

  • Cho H-J, Park Y-J, Noh T-H, Kim Y-T, Kim J-G, Song E-S, Lee D-H, Lee B-M (2008) Molecular analysis of the hrp gene cluster in Xanthomonas oryzae pathovar oryzae KACC10859. Microb Pathog 44(6):473–483

    Article  CAS  PubMed  Google Scholar 

  • Choi M-S, Kim W, Lee C, Oh C-S (2013) Harpins, multi-functional proteins secreted by gram-negative plant-pathogenic bacteria. Mol Plant-Microbe Interact 26(10):1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Cohn J, Sessa G, Martin GB (2001) Innate immunity in plants. Curr Opin Immunol 13(1):55–62

    Article  CAS  PubMed  Google Scholar 

  • Conejero V, Picazo I, Segado P (1979) Citrus exocortis viroid (CEV): protein alterations in different hosts following viroid infection. Virology 97(2):454–456

    Google Scholar 

  • Cook DE, Mesarich CH, Thomma BP (2015) Understanding plant immunity as a surveillance system to detect invasion. Annu Rev Phytopathol 53:541–563

    Article  CAS  PubMed  Google Scholar 

  • Côté F, Hahn MG (1994) Oligosaccharins: structures and signal transduction. Signal Signal Transduct Pathw Plants:143–175

    Google Scholar 

  • Cui H, Gobbato E, Kracher B, Qiu J, Bautor J, Parker JE (2017) A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. New Phytol 213(4):1802–1817

    Article  CAS  PubMed  Google Scholar 

  • D’Ovidio R, Mattei B, Roberti S, Bellincampi D (2004) Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant–pathogen interactions. Biochim Biophys Acta Prot Proteom 1696(2):237–244

    Article  CAS  Google Scholar 

  • Dalio RJ, Magalhaes DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PM, Santos PJ, Maximo HJ (2017) PAMPs, PRRs, effectors and R-genes associated with citrus–pathogen interactions. Ann Bot 119(5):749–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dardick C, Ronald P (2006) Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathog 2(1):e2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dean J, Gamble H, Anderson J (1989) The ethylene biosynthesis-inducing xylanase: its induction in Trichoderma viride and certain plant pathogens. Phytopathology 79(10):1071–1078

    Article  CAS  Google Scholar 

  • Dempsey DMA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11(8):539–548

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Delaney TP, Bauer DW, Beer SV (1999) Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J 20(2):207–215

    Article  CAS  PubMed  Google Scholar 

  • Dong H-P, Peng J, Bao Z, Meng X, Bonasera JM, Chen G, Beer SV, Dong H (2004) Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol 136(3):3628–3638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H-P, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen G, Qu S, Dong H (2005) The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221(3):313–327

    Article  CAS  PubMed  Google Scholar 

  • Eder J, Cosio EG (1994) Elicitors of plant defense responses. Int Rev Cytol 148:1–36

    Article  Google Scholar 

  • Enkerli J, Felix G, Boller T (1999) The enzymatic activity of fungal xylanase is not necessary for its elicitor activity. Plant Physiol 121(2):391–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2020). http://www.fao.org/3/cb1329en/online/cb1329en.html#chapter-3

  • Farrell K, Jahan MA, Kovinich N (2017) Distinct mechanisms of biotic and chemical elicitors enable additive elicitation of the anticancer phytoalexin glyceollin I. Molecules 22(8):1261

    Article  PubMed Central  CAS  Google Scholar 

  • Felix G, Boller T (2003) Molecular sensing of bacteria in plants: the highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J Biol Chem 278(8):6201–6208

    Article  CAS  PubMed  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18(3):265–276

    Article  CAS  PubMed  Google Scholar 

  • Fellbrich G, Blume B, Brunner F, Hirt H, Kroj T, Ligterink W, Romanski A, Nürnberger T (2000) Phytophthora parasitica elicitor-induced reactions in cells of Petroselinum crispum. Plant Cell Physiol 41(6):692–701

    Google Scholar 

  • Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20(19):5400–5411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fliegmann J, Felix G (2016) Immunity: flagellin seen from all sides. Nat Plants 2(9):1–2

    Article  CAS  Google Scholar 

  • Frías M, González M, González C, Brito N (2019) A 25-residue peptide from Botrytis cinerea xylanase BcXyn11A elicits plant defenses. Front Plant Sci 10:474

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaudriault S, Brisset M-N, Barny M-A (1998) HrpW of Erwinia amylovora, a new Hrp-secreted protein. FEBS Lett 428(3):224–228

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi S, Ahl P, Cornu A, Scalla R, Cassini R (1980) First report of host b-protein appearance in response to a fungal infection in tobacco. Physiol Plant Pathol 16(3):337–342

    Article  CAS  Google Scholar 

  • Gimenez-Ibanez S, Hann DR, Ntoukakis V, Petutschnig E, Lipka V, Rathjen JP (2009) AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol 19(5):423–429

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor–like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5(6):1003–1011

    Article  PubMed  Google Scholar 

  • Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, Götz F, Glawischnig E, Lee J, Felix G (2007) Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J Biol Chem 282(44):32338–32348

    Article  CAS  PubMed  Google Scholar 

  • Haapalainen M, Engelhardt S, Kuefner I, Li CM, Nuernberger T, Lee J, Romantschuk M, Taira S (2011) Functional mapping of harpin HrpZ of Pseudomonas syringae reveals the sites responsible for protein oligomerization, lipid interactions and plant defence induction. Mol Plant Pathol 12(2):151–166

    Article  CAS  PubMed  Google Scholar 

  • Hahn MG (1996) Microbial elicitors and their receptors in plants. Annu Rev Phytopathol 34(1):387–412

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones J (1996) Resistance gene-dependent plant defense responses. Plant Cell 8(10):1773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanks SK, Quinn AM (1991) [2] Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200:38–62

    Article  CAS  PubMed  Google Scholar 

  • He SY, Huang H-C, Collmer A (1993) Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73(7):1255–1266

    Google Scholar 

  • Hind SR, Strickler SR, Boyle PC, Dunham DM, Bao Z, O’Doherty IM, Baccile JA, Hoki JS, Viox EG, Clarke CR (2016) Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nat Plants 2(9):1–8

    Article  CAS  Google Scholar 

  • Hu G, DeHart AK, Li Y, Ustach C, Handley V, Navarre R, Hwang CF, Aegerter BJ, Williamson VM, Baker B (2005) EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve. Plant J 42(3):376–391

    Article  CAS  PubMed  Google Scholar 

  • Jabs T, Tschöpe M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O2− from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci 94(9):4800–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeworutzki E, Roelfsema MRG, Anschütz U, Krol E, Elzenga JTM, Felix G, Boller T, Hedrich R, Becker D (2010) Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels. Plant J 62(3):367–378

    Article  CAS  PubMed  Google Scholar 

  • Kandan A, Ramiah M, Vasanthi V, Radjacommare R, Nandakumar R, Ramanathan A, Samiyappan R (2005) Use of Pseudomonas fluorescens-based formulations for management of tomato spotted wilt virus (TSWV) and enhanced yield in tomato. Biocontrol Sci Tech 15(6):553–569

    Article  Google Scholar 

  • Kawamura Y, Takenaka S, Hase S, Kubota M, Ichinose Y, Kanayama Y, Nakaho K, Klessig DF, Takahashi H (2009) Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Plant Cell Physiol 50:924–934

    Article  CAS  PubMed  Google Scholar 

  • Kawchuk L, Hachey J, Lynch D (1998) Development of sequence characterized DNA markers linked to a dominant verticillium wilt resistance gene in tomato. Genome 41(1):91–95

    Article  CAS  PubMed  Google Scholar 

  • Kim JF, Beer SV (1998) HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J Bacteriol 180(19):5203–5210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J-G, Park BK, Yoo C-H, Jeon E, Oh J, Hwang I (2003) Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J Bacteriol 185(10):3155–3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kørner CJ, Klauser D, Niehl A, Domínguez-Ferreras A, Chinchilla D, Boller T, Heinlein M, Hann DR (2013) The immunity regulator BAK1 contributes to resistance against diverse RNA viruses. Mol Plant-Microbe Interact 26(11):1271–1280

    Article  PubMed  CAS  Google Scholar 

  • Kunkel BN, Bent AF, Dahlbeck D, Innes RW, Staskawicz BJ (1993) RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 5(8):865–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16(12):3496–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvitko BH, Ramos AR, Morello JE, Oh H-S, Collmer A (2007) Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. J Bacteriol 189(22):8059–8072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam Y-H, Wong Y-S, Wang B, Wong RN-S, Yeung H-W, Shaw P-C (1996) Use of trichosanthin to reduce infection by turnip mosaic virus. Plant Sci 114(1):111–117

    Article  CAS  Google Scholar 

  • Li JG, Liu HX, Cao J, Chen LF, Gu C, Allen C, Guo JH (2010) PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall. Mol Plant Pathol 11(3):371–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Zhang L, Yao Q, Li L, Dong N, Rong J, Gao W, Ding X, Sun L, Chen X (2013) Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature 501(7466):242–246

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang H, Gago J, Cui H, Qian Z, Kodama N, Ji H, Tian S, Shen D, Chen Y (2015) Harpin Hpa1 interacts with aquaporin PIP1; 4 to promote the substrate transport and photosynthesis in Arabidopsis. Sci Rep 5(1):1–17

    Google Scholar 

  • Li P, Zhang L, Mo X, Ji H, Bian H, Hu Y, Majid T, Long J, Pang H, Tao Y (2019) Rice aquaporin PIP1; 3 and harpin Hpa1 of bacterial blight pathogen cooperate in a type III effector translocation. J Exp Bot 70(12):3057–3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Chen L, Jia Z, Lü B, Shi H, Shao W, Dong H (2011) Transcription factor AtMYB44 regulates induced expression of the ETHYLENE INSENSITIVE2 gene in Arabidopsis responding to a harpin protein. Mol Plant-Microbe Interact 24(3):377–389

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhou X, Liu W, Xiong X, Lv C, Zhou X, Miao W (2018) Functional regions of HpaXm as elicitors with specific heat tolerance induce the hypersensitive response or plant growth promotion in nonhost plants. PLoS One 13(1):e0188788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez-Gomez M, Sandal N, Stougaard J, Boller T (2012) Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J Exp Bot 63(1):393–401

    Article  CAS  PubMed  Google Scholar 

  • Luderer R, Joosten MH (2001) Avirulence proteins of plant pathogens: determinants of victory and defeat. Mol Plant Pathol 2(6):355–364

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJ, Sanders D (1999) Plasma membrane transport in context—making sense out of complexity. Curr Opin Plant Biol 2(3):236–243

    Article  CAS  PubMed  Google Scholar 

  • Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54(2):263–272

    Article  CAS  PubMed  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262(5138):1432–1436

    Article  CAS  PubMed  Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci 94(10):5473–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BP (2012) Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24(1):322–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metraux J, Boller T (1986) Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial and fungal infections. Physiol Mol Plant Pathol 28(2):161–169

    Article  CAS  Google Scholar 

  • Miao W-G, Song C-F, Wang Y, Wang J-S (2010) HpaXm from Xanthomonas citri subsp. malvacearum is a novel harpin with two heptads for hypersensitive response. J Microbiol Biotechnol 20(1):54–62

    Article  CAS  PubMed  Google Scholar 

  • Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J 50(3):500–513

    Article  CAS  PubMed  Google Scholar 

  • Mishra AK, Sharma K, Misra RS (2012a) Elicitor recognition, signal transduction and induced resistance in plants. J Plant Interact 7(2):95–120

    Article  Google Scholar 

  • Mishra BB, Tripathi S, Tripathi C (2012b) Repellent effect of leaves essential oils from Eucalyptus globulus (Myrtaceae) and Ocimum basilicum (Lamiaceae) against two major stored grain insect pests of Coleopterons. Nat Sci 10(2):50–54

    Google Scholar 

  • Montesano M, Brader G, Palva ET (2003) Pathogen derived elicitors: searching for receptors in plants. Mol Plant Pathol 4(1):73–79

    Article  CAS  PubMed  Google Scholar 

  • Moroz N, Tanaka K (2020) FlgII-28 is a major flagellin-derived defense elicitor in potato. Mol Plant-Microbe Interact 33(2):247–255

    Article  CAS  PubMed  Google Scholar 

  • Mott GA, Middleton MA, Desveaux D, Guttman DS (2014) Peptides and small molecules of the plant-pathogen apoplastic arena. Front Plant Sci 5:677

    Article  PubMed  PubMed Central  Google Scholar 

  • Mueller K, Bittel P, Chinchilla D, Jehle AK, Albert M, Boller T, Felix G (2012) Chimeric FLS2 receptors reveal the basis for differential flagellin perception in Arabidopsis and tomato. Plant Cell 24(5):2213–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadarajah K, Kasim N, Fui V (2009) Function of mitogen-activated protein kinase gene in biotic stress. Asian J Plant Sci 8(3):191–198

    Article  CAS  Google Scholar 

  • Nadarajah K, Ali HZ, Muni NM (2015) The host pathogen interactions observed between Fusarium sp. F2 and rice. Plant Omics 8(6):572–580

    CAS  Google Scholar 

  • Niehl A, Wyrsch I, Boller T, Heinlein M (2016) Double-stranded RNA s induce a pattern-triggered immune signaling pathway in plants. New Phytol 211(3):1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Nimchuk Z, Rohmer L, Chang JH, Dangl JL (2001) Knowing the dancer from the dance: R-gene products and their interactions with other proteins from host and pathogen. Curr Opin Plant Biol 4(4):288–294

    Article  CAS  PubMed  Google Scholar 

  • Nino-Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7(5):303–324

    Google Scholar 

  • Niu X-N, Wei Z-Q, Zou H-F, Xie G-G, Wu F, Li K-J, Jiang W, Tang J-L, He Y-Q (2015) Complete sequence and detailed analysis of the first indigenous plasmid from Xanthomonas oryzae pv. oryzicola. BMC Microbiol 15(1):1–15

    Article  Google Scholar 

  • Noda J, Brito N, González C (2010) The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol 10(1):1–15

    Article  CAS  Google Scholar 

  • Noël L, Thieme F, Nennstiel D, Bonas U (2002) Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J Bacteriol 184(5):1340–1348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nürnberger T (1999) Signal perception in plant pathogen defense. Cell Mol Life Sci 55(2):167–182

    Article  PubMed  Google Scholar 

  • Nürnberger T, Scheel D (2001) Signal transmission in the plant immune response. Trends Plant Sci 6(8):372–379

    Article  PubMed  Google Scholar 

  • Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78(3):449–460

    Article  PubMed  Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198(1):249–266

    Article  PubMed  Google Scholar 

  • O’Brien E, Bennett PM (1972) Structure of straight flagella from a mutant Salmonella. J Mol Biol 70(1):133–152

    Article  PubMed  Google Scholar 

  • Onaga G, Wydra K (2016) Advances in plant tolerance to abiotic stresses. Plant Genom 2:1–12

    Google Scholar 

  • Pagano MR, Mendieta JR, Muñoz FF, Daleo GR, Guevara MG (2007) Roles of glycosylation on the antifungal activity and apoplast accumulation of StAPs (Solanum tuberosum aspartic proteases). Int J Biol Macromol 41(5):512–520

    Article  CAS  PubMed  Google Scholar 

  • Palmieri ACB, Amaral AM, Homem RA, Machado MA (2010) Differential expression of pathogenicity-and virulence-related genes of Xanthomonas axonopodis pv. citri under copper stress. Genet Mol Biol 33(2):348–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J-I, Semyonov J, Chang CL, Hsu SYT (2005) Conservation of the heterodimeric glycoprotein hormone subunit family proteins and the LGR signaling system from nematodes to humans. Endocrine 26(3):267–276

    Article  CAS  PubMed  Google Scholar 

  • Pavli OI, Kelaidi GI, Tampakaki AP, Skaracis GN (2011) The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to rhizomania disease in transgenic Nicotiana benthamiana and sugar beet. PLoS One 6(3):e17306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perraki A, Gronnier J, Gouguet P, Boudsocq M, Deroubaix A-F, Simon V, German-Retana S, Zipfel C, Bayer E, Mongrand S (2018) REM1. 3’s phospho-status defines its plasma membrane nanodomain organization and activity in restricting PVX cell-to-cell movement. PLoS Pathog 14(11):e1007378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfund C, Tans-Kersten J, Dunning FM, Alonso JM, Ecker JR, Allen C, Bent AF (2004) Flagellin is not a major defense elicitor in Ralstonia solanacearum cells or extracts applied to Arabidopsis thaliana. Mol Plant-Microbe Interact 17(6):696–706

    Article  CAS  PubMed  Google Scholar 

  • Pollet A, Delcour JA, Courtin CM (2010) Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Crit Rev Biotechnol 30(3):176–191

    Article  CAS  PubMed  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu M-Y, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396):2085–2088

    Article  CAS  PubMed  Google Scholar 

  • Qi F, Zhang W, Zhang F, Chen G, Liu W (2014) Deciphering the effect of the different N-glycosylation sites on the secretion, activity, and stability of cellobiohydrolase I from Trichoderma reesei. Appl Environ Microbiol 80(13):3962–3971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raaymakers TM, Van den Ackerveken G (2016) Extracellular recognition of oomycetes during biotrophic infection of plants. Front Plant Sci 7:906

    Article  PubMed  PubMed Central  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16(6):1604–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronald PC, Albano B, Tabien R, Abenes L, Wu K-S, McCouch S, Tanksley SD (1992) Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol Gen Genet MGG 236(1):113–120

    Article  CAS  PubMed  Google Scholar 

  • Rotblat B, Enshell-Seijffers D, Gershoni JM, Schuster S, Avni A (2002) Identification of an essential component of the elicitation active site of the EIX protein elicitor. Plant J 32(6):1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Savary S, Ficke A, Aubertot J-N, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Springer, New York, NY

    Book  Google Scholar 

  • Schaller A, Oecking C (1999) Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11(2):263–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya N, Minami E (2001) Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol 59(5):223–233

    Article  CAS  Google Scholar 

  • Shirasu K (2009) The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu Rev Plant Biol 60:139–164

    Article  CAS  PubMed  Google Scholar 

  • Shiu S-H, Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 2001(113):re22

    Article  CAS  PubMed  Google Scholar 

  • Shiu S-H, Karlowski WM, Pan R, Tzeng Y-H, Mayer KF, Li W-H (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16(5):1220–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha R, Park DH, Cho JM, Cho S, Wilson C, Hwang I, Hur JH, Lim CK (2008) Genetic organization of the hrp genes cluster in Erwinia pyrifoliae and characterization of HR active domains in HrpN Ep protein by mutational analysis. Mol Cells 25(1):30

    CAS  PubMed  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385(6618):718–721

    Article  CAS  Google Scholar 

  • Singh N, Pandey P, Dubey R, Maheshwari D (2008) Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World J Microbiol Biotechnol 24(9):1669–1679

    Article  Google Scholar 

  • Solé M, Scheibner F, Hoffmeister A-K, Hartmann N, Hause G, Rother A, Jordan M, Lautier M, Arlat M, Büttner D (2015) Xanthomonas campestris pv. vesicatoria secretes proteases and xylanases via the Xps type II secretion system and outer membrane vesicles. J Bacteriol 197(17):2879–2893

    Google Scholar 

  • Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, Holsten T, Gardner J, Wang B, Zhai W-X, Zhu L-H (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270(5243):1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Struwe WB, Robinson CV (2019) Relating glycoprotein structural heterogeneity to function–insights from native mass spectrometry. Curr Opin Struct Biol 58:241–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y, Bakker T, Harris J, Tsang C, Brown GD, Wormald MR, Gordon S, Dwek RA, Rudd PM, Martinez-Pomares L (2005) Glycosylation influences the lectin activities of the macrophage mannose receptor. J Biol Chem 280(38):32811–32820

    Article  CAS  PubMed  Google Scholar 

  • Su H, Song S, Yan X, Fang L, Zeng B, Zhu Y (2018) Endogenous salicylic acid shows different correlation with baicalin and baicalein in the medicinal plant Scutellaria baicalensis Georgi subjected to stress and exogenous salicylic acid. PLoS One 13(2):e0192114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun WX, Jia YJ, Feng BZ, O’Neill NR, Zhu XP, Xie BY, Zhang XG (2009) Functional analysis of Pcipg2 from the straminopilous plant pathogen Phytophthora capsici. Genesis 47(8):535–544

    Article  CAS  PubMed  Google Scholar 

  • Suty L, Blein J, Ricci P, Pugin A (1995) Early changes in gene expression in tobacco cells elicited with cryptogein. Mol Plant-Microbe Interact 8:644

    Article  CAS  Google Scholar 

  • Tarafdar PK, Vedantam LV, Kondreddy A, Podile AR, Swamy MJ (2009) Biophysical investigations on the aggregation and thermal unfolding of harpinPss and identification of leucine-zipper-like motifs in harpins. Biochim Biophys Acta Prot Proteom 1794(11):1684–1692

    Article  CAS  Google Scholar 

  • Thakur M, Sohal BS (2013) Role of elicitors in inducing resistance in plants against pathogen infection: a review. Int Scholar Res Notices 2013:762412

    Google Scholar 

  • Tundo S, Moscetti I, Faoro F, Lafond M, Giardina T, Favaron F, Sella L, D’Ovidio R (2015) Fusarium graminearum produces different xylanases causing host cell death that is prevented by the xylanase inhibitors XIP-I and TAXI-III in wheat. Plant Sci 240:161–169

    Google Scholar 

  • Tyler BM (2002) Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu Rev Phytopathol 40(1):137–167

    Article  CAS  PubMed  Google Scholar 

  • Tytgat HL, De Vos WM (2016) Sugar coating the envelope: glycoconjugates for microbe–host crosstalk. Trends Microbiol 24(11):853–861

    Article  CAS  PubMed  Google Scholar 

  • Van Loon L, Pierpoint W, Boller T, Conejero V (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Report 12(3):245–264

    Article  Google Scholar 

  • Varki A (2017) Biological roles of glycans. Glycobiology 27(1):3–49

    Article  CAS  PubMed  Google Scholar 

  • Wagner S, Stuttmann J, Rietz S, Guerois R, Brunstein E, Bautor J, Niefind K, Parker JE (2013) Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe 14(6):619–630

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang L, Ji H, Mo X, Li P, Wang J, Dong H (2018) Hpa1 is a type III translocator in Xanthomonas oryzae pv. oryzae. BMC Microbiol 18(1):1–11

    Article  CAS  Google Scholar 

  • Wei Z-M, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257(5066):85–88

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Caceres-Moreno C, Jimenez-Gongora T, Wang K, Sang Y, Lozano-Duran R, Macho AP (2018) The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. Plant Biotechnol J 16(7):1349–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendehenne D, Lamotte O, Frachisse J-M, Barbier-Brygoo H, Pugin A (2002) Nitrate efflux is an essential component of the cryptogein signaling pathway leading to defense responses and hypersensitive cell death in tobacco. Plant Cell 14(8):1937–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willmann MR, Endres MW, Cook RT, Gregory BD (2011) The functions of RNA-dependent RNA polymerases in Arabidopsis. Arabidopsis Book 9:e0146

    Article  PubMed  PubMed Central  Google Scholar 

  • Woo JY, Jeong KJ, Kim YJ, Paek K-H (2016) CaLecRK-S. 5, a pepper L-type lectin receptor kinase gene, confers broad-spectrum resistance by activating priming. J Exp Bot 67(19):5725–5741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Wang S, Qiao J, Liu J, Zhan J, Gao X (2009) Expression of HpaGXooc protein in Bacillus subtilis and its biological functions. J Microbiol Biotechnol 19(2):194–203

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Valli A, García JA, Zhou X, Cheng X (2019) The tug-of-war between plants and viruses: great progress and many remaining questions. Viruses 11(3):203

    Article  CAS  PubMed Central  Google Scholar 

  • Xie L, Liu Y, Wang H, Liu W, Di R, Miao W, Zheng F (2017) Characterization of harpin Xoo induced hypersensitive responses in non host plant, tobacco. J Plant Biochem Biotechnol 26(1):73–79

    Article  CAS  Google Scholar 

  • Yamaguchi T, Yamada A, Hong N, Ogawa T, Ishii T, Shibuya N (2000) Differences in the recognition of glucan elicitor signals between rice and soybean: β-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Plant Cell 12(5):817–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi K, Yamada K, Ishikawa K, Yoshimura S, Hayashi N, Uchihashi K, Ishihama N, Kishi-Kaboshi M, Takahashi A, Tsuge S (2013) A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe 13(3):347–357

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Qi X, Jiang Z, Yang S, Han L (2008) Characterization of a pathogenesis-related class 10 protein (PR-10) from Astragalus mongholicus with ribonuclease activity. Plant Physiol Biochem 46(1):93–99

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Gou X, He K, Xi D, Du J, Lin H, Li J (2010) BAK1 and BKK1 in Arabidopsis thaliana confer reduced susceptibility to turnip crinkle virus. Eur J Plant Pathol 127(1):149–156

    Article  CAS  Google Scholar 

  • Yu G-L, Katagiri F, Ausubel FM (1993) Arabidopsis mutations at the RPS2 locus result in loss of resistance to Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Mol Plant-Microbe Interact 6:434–434

    Article  CAS  PubMed  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25(2):139–150

    Article  CAS  PubMed  Google Scholar 

  • Zamora M, Méndez-López E, Agirrezabala X, Cuesta R, Lavín JL, Sánchez-Pina MA, Aranda MA, Valle M (2017) Potyvirus virion structure shows conserved protein fold and RNA binding site in ssRNA viruses. Sci Adv 3(9):eaao2182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng W, He SY (2010) A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol 153(3):1188–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhou J-M (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 3(5):783–793

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, MaGbanua MM, White FF (2000) Identification of two Novelhrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. J Bacteriol 182(7):1844–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel C, Felix G (2005) Plants and animals: a different taste for microbes? Curr Opin Plant Biol 8(4):353–360

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428(6984):764–767

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125(4):749–760

    Article  CAS  PubMed  Google Scholar 

  • Zou L-F, Wang X-P, Xiang Y, Zhang B, Li Y-R, Xiao Y-L, Wang J-S, Walmsley AR, Chen G-Y (2006) Elucidation of the hrp clusters of Xanthomonas oryzae pv. oryzicola that control the hypersensitive response in nonhost tobacco and pathogenicity in susceptible host rice. Appl Environ Microbiol 72(9):6212–6224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The research was supported by the Ministry of Human Resource Development (MHRD-FAST CoE) (F.No.5-6/2013-TS-VII), from the Government of India under grant number F.No.5-6/2013-TSVII sanctioned to SU and Core funding from the Department of Agriculture, Tamil Nadu Government, through University-PDF support to BJ by Tamil Nadu Agricultural University, Coimbatore. This work was also supported by awards to JMF through the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, Physical Biosciences Program (DOE DE-FG02-05ER15650) to advance microbial biocatalysts and the National Institutes of Health (NIH R01 GM57498) to understand ubiquitin-proteasome systems in disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivakumar Uthandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, J.B., Senthamilselvi, D., Maupin-Furlow, J.A., Uthandi, S. (2022). Microbial Protein Elicitors in Plant Defense. In: Kumar, A. (eds) Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87512-1_10

Download citation

Publish with us

Policies and ethics