Skip to main content

Bifurcation Analysis of the Topp Model

  • Conference paper
  • First Online:
Current Trends in Analysis, its Applications and Computation

Part of the book series: Trends in Mathematics ((RESPERSP))

  • 428 Accesses

Abstract

In this paper, we study the 3-dimensional Topp model for the dynamics of diabetes. We show that for suitable parameter values an equilibrium of this model bifurcates through a Hopf-saddle-node bifurcation. Numerical analysis suggests that near this point Shilnikov homoclinic orbits exist. In addition, chaotic attractors arise through period doubling cascades of limit cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.N. Bautin, E.A. Leontovich, Methods and Ways of the Qualitative Analysis of Dynamical Systems in a Plane, Nauka, Moscow (1990) (in Russian)

    MATH  Google Scholar 

  2. M. Benedicks, L. Carleson, The dynamics of the Hénon map. Ann. Math. 133, 73–169 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. H.W. Broer, V.A. Gaiko, Global qualitative analysis of a quartic ecological model. Nonlinear Anal. 72, 628–634 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. H.W. Broer, G. Vegter, Subordinate Shilnikov bifurcations near some singularities of vector fields having low codimension. Ergod. Th. Dynam. Sys. 4, 509–525 (1984)

    Article  MATH  Google Scholar 

  5. H.W. Broer, R. Vitolo, Dynamical systems modeling of low-frequency variability in low-order atmospheric models. Discrete Contin. Dyn. Syst. Ser. B 10, 401–409 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. H.W. Broer, C. Simó, R. Vitolo, Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing. Nonlinearity 15, 1205–1267 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. H.W. Broer, V. Naudot, R. Roussarie, K. Saleh, Dynamics of a predator-prey model with non-monotonic response function. Discrete Contin. Dyn. Syst. Ser. A 18, 221–251 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. H.W. Broer, H.A. Dijkstra, C. Simó, A.E. Sterk, R. Vitolo, The dynamics of a low-order model for the Atlantic Multidecadal Oscillation. Discrete Contin. Dyn. Syst. Ser. B 16, 73–107 (2011); Ergodic Th. Dyn. Sys. 4, 509–525.

    Google Scholar 

  9. D.T. Crommelin, J. D. Opsteegh, F. Verhulst, A mechanism for atmospheric regime behaviour. J. Atmos. Sci. 61, 1406–1419 (2004)

    Article  Google Scholar 

  10. V.A. Gaiko, Global Bifurcation Theory and Hilbert’s Sixteenth Problem (Kluwer, Boston, 2003)

    Book  MATH  Google Scholar 

  11. V.A. Gaiko, Multiple limit cycle bifurcations of the FitzHugh–Nagumo neuronal model. Nonlinear Anal. 74, 7532–7542 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. V.A. Gaiko, On limit cycles surrounding a singular point. Differ. Equ. Dyn. Syst. 20, 329–337 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. V.A. Gaiko, The applied geometry of a general Liénard polynomial system. Appl. Math. Lett. 25, 2327–2331 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. V.A. Gaiko, Limit cycle bifurcations of a general Liénard system with polynomial restoring and damping functions. Int. J. Dyn. Syst. Differ. Equ. 4, 242–254 (2012)

    MathSciNet  MATH  Google Scholar 

  15. V.A. Gaiko, Limit cycle bifurcations of a special Liénard polynomial system. Adv. Dyn. Syst. Appl. 9, 109–123 (2014)

    MathSciNet  Google Scholar 

  16. V.A. Gaiko, Maximum number and distribution of limit cycles in the general Liénard polynomial system. Adv. Dyn. Syst. Appl. 10, 177–188 (2015)

    MathSciNet  Google Scholar 

  17. V.A. Gaiko, Global qualitative analysis of a Holling-type system. Int. J. Dyn. Syst. Differ. Equ. 6, 161–172 (2016)

    MathSciNet  MATH  Google Scholar 

  18. V.A. Gaiko, Global bifurcation analysis of the Kukles cubic system. Int. J. Dyn. Syst. Differ. Equ. 8, 326–336 (2018)

    MathSciNet  MATH  Google Scholar 

  19. V.A. Gaiko, Limit cycles of a Topp system, in 9th International Conference on Physics and Control, Innopolis, Russia, September 8–11 (2019), pp. 96–99

    Google Scholar 

  20. V.A. Gaiko, C. Vuik, Global dynamics in the Leslie–Gower model with the Allee effect. Int. J. Bifurcation Chaos 28, 31850151 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Ghane, A.E. Sterk, H. Waalkens, Chaotic dynamics from a pseudo-linear system. IMA J. Math. Control Inform. 2, 1–18 (2019)

    MATH  Google Scholar 

  22. Yu.A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer. New York, 2004)

    Book  MATH  Google Scholar 

  23. L.M. Perko, Multiple limit cycle bifurcation surfaces and global families of multiple limit cycles. J. Diff. Equ. 122, 89–113 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. A.E. Sterk, R. Vitolo, H.W. Broer, C. Simó, H.A. Dijkstra, New nonlinear mechanisms of midlatitude atmospheric low-frequency variability. Physica D 239, 702–718 (2010)

    Article  MATH  Google Scholar 

  25. B. Topp, K. Promislow, G. Devries, R.M. Miuraa, D.T. Finegood, A model of β-cell mass, insulin, and glucose kinetics: pathways to diabetes. J. Theor. Biol. 206, 605–619 (2000)

    Article  Google Scholar 

  26. L. van Veen, Baroclinic flow and the Lorenz-84 model. Int. J. Bifurcation Chaos 13, 2117–2139 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Robert MacKay (University of Warwick, UK) who initiated this research. The first author was supported by the London Mathematical Society (LMS) and the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaiko, V.A., Sterk, A.E., Broer, H.W. (2022). Bifurcation Analysis of the Topp Model. In: Cerejeiras, P., Reissig, M., Sabadini, I., Toft, J. (eds) Current Trends in Analysis, its Applications and Computation. Trends in Mathematics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-87502-2_1

Download citation

Publish with us

Policies and ethics