Aitlhadj L, Avila DS, Benedetto A, Aschner M, Stürzenbaum SR. Environmental exposure, obesity, and Parkinson's disease: lessons from fat and old worms. Environ Health Perspect. 2011;119(1):20–8.
CAS
PubMed
CrossRef
Google Scholar
Alfonso A, et al. The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science. 1993;261(5121):617–9.
CAS
PubMed
CrossRef
Google Scholar
Arpagaus M, et al. Four acetylcholinesterase genes in the nematode Caenorhabditis elegans. J Physiol Paris. 1998;92(5–6):363–7.
CAS
PubMed
CrossRef
Google Scholar
Benedetto A, Au C, Avila DS, Milatovic D, Aschner M. Extracellular dopamine potentiates Mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3–dependent manner in Caenorhabditis elegans. PLoS Genet. 2010;6(8):e1001084.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
de Bono M, Maricq AV. Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci. 2005;28:451–501.
PubMed
CrossRef
CAS
Google Scholar
Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71–94.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chakraborty S, Bornhorst J, Nguyen TT, Aschner M. Oxidative stress mechanisms underlying Parkinson’s disease-associated neurodegeneration in C. elegans. Int J Mol Sci. 2013;14(11):23103–28.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science. 1994;263(5148):802–5.
CAS
PubMed
CrossRef
Google Scholar
Chase DL, Koelle MR. Biogenic amine neurotransmitters in C. elegans. WormBook. 2007:1–15.
Google Scholar
Chege PM, McColl G. Caenorhabditis elegans: a model to investigate oxidative stress and metal dyshomeostasis in Parkinson's disease. Front Aging Neurosci. 2014;6:89.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Chen BL, Hall DH, Chklovskii DB. Wiring optimization can relate neuronal structure and function. Proc Natl Acad Sci U S A. 2006;103(12):4723–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chen P, Martinez-Finley EJ, Bornhorst J, Chakraborty S, Aschner M. Metal-induced neurodegeneration in C. elegans. Front Aging Neurosci 2013;5:18.
Google Scholar
Combes D, et al. Multiple ace genes encoding acetylcholinesterases of Caenorhabditis elegans have distinct tissue expression. Eur J Neurosci. 2003;18(3):497–512.
PubMed
CrossRef
Google Scholar
Cooper JF, Van Raamsdonk JM. Modeling Parkinson’s Disease in C. elegans. J Parkinsons Dis. 2018;8(1):17–32.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Cooper JF, Dues DJ, Spielbauer KK, Machiela E, Senchuk MM, Van Raamsdonk JM. Delaying aging is neuroprotective in Parkinson’s disease: a genetic analysis in C. elegans models. NPJ Parkinsons Dis. 2015;1(15022)
Google Scholar
Delcastillo J, Demello WC, Morales T. The physiological role of acetylcholine in the neuromuscular system of Ascaris Lumbricoides. Arch Int Physiol Biochim. 1963;71:741–57.
CAS
PubMed
Google Scholar
Doke SK, Dhawale SC. Alternatives to animal testing: a review. Saudi Pharm J. 2015;23(3):223–9.
PubMed
CrossRef
Google Scholar
Duerr JS, et al. Identification of major classes of cholinergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol. 2008;506(3):398–408.
CAS
PubMed
CrossRef
Google Scholar
Eiden LE. The cholinergic gene locus. J Neurochem. 1998;70(6):2227–40.
CAS
PubMed
CrossRef
Google Scholar
Engleman EA, Katner SN, Neal-Beliveau BS. Caenorhabditis elegans as a model to study the molecular and genetic mechanisms of drug addiction. Prog Mol Biol Transl Sci. 2016;137:229–52.
PubMed
CrossRef
Google Scholar
Ferguson SM, et al. Vesicular localization and activity-dependent trafficking of presynaptic choline transporters. J Neurosci. 2003;23(30):9697–709.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.
CAS
PubMed
CrossRef
Google Scholar
Grotewiel M, Bettinger JC. Drosophila and Caenorhabditis elegans as discovery platforms for genes involved in human alcohol use disorder. Alcohol Clin Exp Res. 2015;9(8):1292–311.
CrossRef
CAS
Google Scholar
Guo L, Zhen X. Sigma-2 receptor ligands: neurobiological effects. Curr Med Chem. 2015;22(8):989–1003.
PubMed
CrossRef
CAS
Google Scholar
Gwyn DG, Flumerfelt BA. Acetylcholinesterase in non-cholinergic neurones: a histochemical study of dorsal root ganglion cells in the rat. Brain Res. 1971;34(1):193–8.
CAS
PubMed
CrossRef
Google Scholar
van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet. 2008;4:e1000027.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA. Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc Natl Acad Sci U S A. 2008;105:728–33.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA. C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s disease. Dev Dyn. 2010;239(5):1282–95.
CAS
PubMed
Google Scholar
Helmcke KJ, Aschner M. Hormetic effect of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol. 2010;248(2):156–64.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hobert O. Specification of the nervous system. WormBook. 2005:1–19.
Google Scholar
Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;4211:82–187.
Google Scholar
Horiuchi Y, et al. Evolutional study on acetylcholine expression. Life Sci. 2003;72(15):1745–56.
CAS
PubMed
CrossRef
Google Scholar
Hu YO, et al. Phenotypic and behavioral defects induced by iron exposure can be transferred to progeny in Caenorhabditis elegans. Biomed Environ Sci. 2008;21(6):467–73.
CAS
PubMed
CrossRef
Google Scholar
Johnson CD, Russell RL. Multiple molecular forms of acetylcholinesterase in the nematode Caenorhabditis elegans. J Neurochem. 1983;41(1):30–46.
CAS
PubMed
CrossRef
Google Scholar
Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov. 2006;5(5):387–98.
CAS
PubMed
CrossRef
Google Scholar
Kim DK, Lim HS, Kawasaki I, Shim YH, Vaikath NN, El-Agnaf OM, Lee HJ, Lee SJ. Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function. Autophagy. 2016;12:1849–63.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Knight AL, Yan XH, Hamamichi S, Ajjuri RR, Mazzulli JR, Zhang MW, Daigle JG, Zhang SY, Borom AR, Roberts LR, Lee SK, DeLeon SM, Viollet-Djelassi C, Krainc D, O’Donnell JM, Caldwell KA, Caldwell GA. The glycolytic enzyme, GPI, is a functionally conserved modifier of dopaminergic neurodegeneration in Parkinson’s models. Cell Metab. 2014;20:145–57.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kolson DL, Russell RL. A novel class of acetylcholinesterase, revealed by mutations, in the nematode Caenorhabditis elegans. J Neurogenet. 1985;2(2):93–110.
CAS
PubMed
CrossRef
Google Scholar
Kraemer BC, et al. Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci U S A. 2003;100(17):9980–5.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lakso M, Vartiainen S, Moilanen AM, Sirvio J, Thomas JH, Nass R, et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem. 2003;86(1):165–72.
CAS
PubMed
CrossRef
Google Scholar
Levitan D, Greenwald I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature. 1995;377(6547):351–4.
CAS
PubMed
CrossRef
Google Scholar
Lewis JA, et al. Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience. 1980;5(6):967–89.
CAS
PubMed
CrossRef
Google Scholar
Lints R, Emmons SW. Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGF-beta family signaling pathway and a Hox gene. Development. 1999;126(24):5819–31.
CAS
PubMed
CrossRef
Google Scholar
Martinez-Finley EJ, Avila DS, Chakraborty S, Aschner M. Insights from Caenorhabditis elegans on the role of metals in neurodegenerative diseases. Metallomics. 2011;3(3):271–9.
CAS
PubMed
CrossRef
Google Scholar
Marvanova M, Nichols CD. Identification of neuroprotective compounds of Caenorhabditis elegans dopaminergic neurons against 6-OHDA. J Mol Neurosci. 2007;31(2):127–37.
CAS
PubMed
Google Scholar
Matthies DS, et al. The Caenorhabditis elegans choline transporter CHO-1 sustains acetylcholine synthesis and motor function in an activity-dependent manner. J Neurosci. 2006;26(23):6200–12.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Maulik M, Mitra S, Bult-Ito A, Taylor BE, Vayndorf EM. Behavioral phenotyping and pathological indicators of Parkinson's disease in C. elegans models. Front Genet 2017;8:77.
Google Scholar
McDonald PW, Jessen T, Field JR, Blakely RD. Dopamine signaling architecture in Caenorhabditis elegans. Cell Mol Neurobiol. 2006;26(4–6):593–618.
CAS
PubMed
Google Scholar
Melstrom PC, Williams PL. Reversible AChE inhibitors in C. elegans vs. rats, mice. Biochem Biophys Res Commun. 2007;357(1):200–5.
CAS
PubMed
CrossRef
Google Scholar
Mor DE, Daniels MJ, Ischiropoulos H. The usual suspects, dopamine and alpha-synuclein, conspire to cause neurodegeneration. Mov Disord. 2019;1-13
Google Scholar
Nass R. C. elegans genetic strategies to identify novel Parkinson’s disease-associated therapeutic targets and leads. In: Nass R, Przedborski S, editors. Parkinson’s disease: molecular and therapeutic insights from model systems. Boston: Academic; 2008. p. 261–8.
Google Scholar
Nass R, Blakely RD. The Caenorhabditis elegans dopaminergic system: opportunities for insights into dopamine transport and neurodegeneration. Annu Rev Pharmacol Toxicol. 2003;43:521–44.
CAS
PubMed
CrossRef
Google Scholar
Nass R, Hall DH, Miller DM, Blakely RD. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2002;99(5):3264–9.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Nass R, Merchant KM, Ryan T. Caenorhabditis elegans in Parkinson's disease drug discovery: addressing an unmet medical need. Mol Interv. 2008;8(6):284–93.
CAS
PubMed
CrossRef
Google Scholar
Nees F. The nicotinic cholinergic system function in the human brain. Neuropharmacology. 2015;96(Pt B):289–301.
CAS
PubMed
CrossRef
Google Scholar
Nollen EA, Garcia SM, van Haaften G, Kim S, Chavez A, Morimoto RI, et al. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci U S A. 2004;101(17):6403–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Nuttley WM, Atkinson-Leadbeater KP, Van Der Kooy D. Serotonin mediates food-odor associative learning in the nematode Caenorhabditiselegans. Proc Natl Acad Sci U S A. 2002;99(19):12449–54.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Okuda T, Haga T, Kanai Y, Endou H, Ishihara T, Katsura I. Identification and characterization of the high-affinity choline transporter. Nat Neurosci. 2000;3(2):120–5.
CAS
PubMed
CrossRef
Google Scholar
Pereira L, et al. A cellular and regulatory map of the cholinergic nervous system of C. elegans. elife. 2015;4
Google Scholar
Peres TV, Schettinger MRC, Chen P, Carvalho F, Avila DS, Bowman AB, Aschner M. Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC. Pharmacol Toxicol. 2016;17
Google Scholar
Rand JB. Genetic analysis of the cha-1-unc-17 gene complex in Caenorhabditis. Genetics. 1989;122(1):73–80.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Rand JB. Acetylcholine WormBook. 2007:1–21.
Google Scholar
Rand JB, Russell RL. Choline acetyltransferase-deficient mutants of the nematode Caenorhabditis elegans. Genetics. 1984;106(2):227–48.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ranganathan R, Sawin ER, Trent C, Horvitz HR. Mutations in the Caenorhabditis elegans serotonin reuptake transporter MOD-5 reveal serotonin-dependent and -independent activities of fluoxetine. J Neurosci. 2001;21(16):5871–84.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Rangel NA, Lin L, Rakariyatham K, Bach A, Trinh K, Clement MH, Srinivasan C. Unincorporated iron pool is linked to oxidative stress and iron levels in Caenorhabditis elegans. Biometals. 2012;25(5):971–85.
CAS
PubMed
CrossRef
Google Scholar
Riddle DL, Blumenthal T, Meyer BJ, Priess JR. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, editors. Introduction to C. elegans. 2nd ed. New York: Cold Spring Harbor; 1997.
Google Scholar
Ruan Q, Harrington AJ, Caldwell KA, Caldwell GA, Standaert DG. VPS41, a protein involved in lysosomal trafficking, is protective in Caenorhabditis elegans and mammalian cellular models of Parkinson's disease. Neurobiol Dis. 2010;37:330–8.
CAS
PubMed
CrossRef
Google Scholar
Sawin ER, Ranganathan R, Horvitz HR. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron. 2000;26(3):619–31.
CAS
PubMed
CrossRef
Google Scholar
Suh Y, Atzmon G, Cho MO, Hwang D, Liu B, Leahy DJ, Barzilai N, Cohen P. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A. 2008;105:3438–42.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Suo S, Ishiura S, Van Tol HH. Dopamine receptors in C. elegans. Eur J Pharmacol. 2004;500(1–3):159–66.
CAS
PubMed
CrossRef
Google Scholar
Tatsumi M, Groshan K, Blakely RD, Richelson E. Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997;340:249–58.
CAS
PubMed
CrossRef
Google Scholar
Tatsumi M, Groshan K, Blakely RD, Richelson E. Pharmacological profile of neuroleptics at human monoamine transporters. Eur J Pharmacol. 1999;368:277–83.
CAS
PubMed
CrossRef
Google Scholar
VanDuyn N, Settivari R, Wong G, Nass R. SKN-1/Nrf2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity. Toxicol Sci. 2010;118(2):613–24.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wang D, Xing X. Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. J Environ Sci (China). 2008;20(9):1132–7.
CAS
CrossRef
Google Scholar
White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci. 1986;314(1165):1–340.
CAS
Google Scholar
Xing XJ, et al. Exposure to lead and mercury in young larvae induces more severe deficits in neuronal survival and synaptic function than in adult nematodes. Arch Environ Contam Toxicol. 2009;56(4):732–41.
CAS
PubMed
CrossRef
Google Scholar
Yanik MF, Cinar H, Cinar HN, Chisholm AD, Jin Y, Ben-Yakar A. Neurosurgery: functional regeneration after laser axotomy. Nature. 2004;432(7019):822.
CAS
PubMed
CrossRef
Google Scholar
Yankner BA, Lu T, Loerch P. The aging brain. Annu Rev Pathol. 2008;3:41–66.
CAS
PubMed
CrossRef
Google Scholar
Ye HY, Ye BP, Wang DY. Evaluation of the long-term memory for thermosensation regulated by neuronal calcium sensor-1 in Caenorhabditis elegans. Neurosci Bull. 2008;24(1):1–6.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yi B, et al. Small molecule modulator of sigma 2 receptor is neuroprotective and reduces cognitive deficits and neuroinflammation in experimental models of Alzheimer's disease. J Neurochem. 2017;140(4):561–75.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar