Skip to main content

The Use and Predictability of C. elegans as an Alternative and Complementary Model in Neurotoxicological Studies: Focus on the Dopaminergic System

  • 93 Accesses

Part of the Molecular and Integrative Toxicology book series (MOLECUL)

Abstract

Several alternative models have been used to create new studies on central nervous system (CNS) function. The benefits associated with these alternative approaches are time efficiency, reduced manpower, cost-effectiveness, and avoidance of ethical concerns on the use of higher vertebrates. In this regard, Caenorhabditis elegans (C. elegans), a small, free-living, soil nematode which uses bacteria as a food source, is being used to complement traditional experiments. Studies on worm genomes add new insights into the mechanisms of several neurological disorders and neuronal regeneration. Strains can be genetically modified to express fluorescent reporters, allowing one to follow relevant regulatory pathways, visualize different neuronal lineages as well as morphology alterations. One key advantage of studies with C. elegans is that a functional synapse can be studied inside a living organism and an immediate behavioral response profile can be observed. Neurotoxicology studies using C. elegans allow the discovery of a collection of genes and molecular targets involved in neurodegeneration and other neuronal alterations following toxicological insult. Here we provide a synopsis of the findings on the cholinergic and dopaminergic systems of the CNS, using C. elegans as an animal model.

Keywords

  • Dopamine
  • Dopaminergic system
  • Acetylcholine
  • Cholinergic system
  • Neurodegeneration
  • Parkinson disease

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-87451-3_1
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-87451-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)

References

  • Aitlhadj L, Avila DS, Benedetto A, Aschner M, Stürzenbaum SR. Environmental exposure, obesity, and Parkinson's disease: lessons from fat and old worms. Environ Health Perspect. 2011;119(1):20–8.

    CAS  PubMed  CrossRef  Google Scholar 

  • Alfonso A, et al. The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science. 1993;261(5121):617–9.

    CAS  PubMed  CrossRef  Google Scholar 

  • Arpagaus M, et al. Four acetylcholinesterase genes in the nematode Caenorhabditis elegans. J Physiol Paris. 1998;92(5–6):363–7.

    CAS  PubMed  CrossRef  Google Scholar 

  • Benedetto A, Au C, Avila DS, Milatovic D, Aschner M. Extracellular dopamine potentiates Mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3–dependent manner in Caenorhabditis elegans. PLoS Genet. 2010;6(8):e1001084.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • de Bono M, Maricq AV. Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci. 2005;28:451–501.

    PubMed  CrossRef  CAS  Google Scholar 

  • Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71–94.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chakraborty S, Bornhorst J, Nguyen TT, Aschner M. Oxidative stress mechanisms underlying Parkinson’s disease-associated neurodegeneration in C. elegans. Int J Mol Sci. 2013;14(11):23103–28.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science. 1994;263(5148):802–5.

    CAS  PubMed  CrossRef  Google Scholar 

  • Chase DL, Koelle MR. Biogenic amine neurotransmitters in C. elegans. WormBook. 2007:1–15.

    Google Scholar 

  • Chege PM, McColl G. Caenorhabditis elegans: a model to investigate oxidative stress and metal dyshomeostasis in Parkinson's disease. Front Aging Neurosci. 2014;6:89.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Chen BL, Hall DH, Chklovskii DB. Wiring optimization can relate neuronal structure and function. Proc Natl Acad Sci U S A. 2006;103(12):4723–8.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chen P, Martinez-Finley EJ, Bornhorst J, Chakraborty S, Aschner M. Metal-induced neurodegeneration in C. elegans. Front Aging Neurosci 2013;5:18.

    Google Scholar 

  • Combes D, et al. Multiple ace genes encoding acetylcholinesterases of Caenorhabditis elegans have distinct tissue expression. Eur J Neurosci. 2003;18(3):497–512.

    PubMed  CrossRef  Google Scholar 

  • Cooper JF, Van Raamsdonk JM. Modeling Parkinson’s Disease in C. elegans. J Parkinsons Dis. 2018;8(1):17–32.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cooper JF, Dues DJ, Spielbauer KK, Machiela E, Senchuk MM, Van Raamsdonk JM. Delaying aging is neuroprotective in Parkinson’s disease: a genetic analysis in C. elegans models. NPJ Parkinsons Dis. 2015;1(15022)

    Google Scholar 

  • Delcastillo J, Demello WC, Morales T. The physiological role of acetylcholine in the neuromuscular system of Ascaris Lumbricoides. Arch Int Physiol Biochim. 1963;71:741–57.

    CAS  PubMed  Google Scholar 

  • Doke SK, Dhawale SC. Alternatives to animal testing: a review. Saudi Pharm J. 2015;23(3):223–9.

    PubMed  CrossRef  Google Scholar 

  • Duerr JS, et al. Identification of major classes of cholinergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol. 2008;506(3):398–408.

    CAS  PubMed  CrossRef  Google Scholar 

  • Eiden LE. The cholinergic gene locus. J Neurochem. 1998;70(6):2227–40.

    CAS  PubMed  CrossRef  Google Scholar 

  • Engleman EA, Katner SN, Neal-Beliveau BS. Caenorhabditis elegans as a model to study the molecular and genetic mechanisms of drug addiction. Prog Mol Biol Transl Sci. 2016;137:229–52.

    PubMed  CrossRef  Google Scholar 

  • Ferguson SM, et al. Vesicular localization and activity-dependent trafficking of presynaptic choline transporters. J Neurosci. 2003;23(30):9697–709.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

    CAS  PubMed  CrossRef  Google Scholar 

  • Grotewiel M, Bettinger JC. Drosophila and Caenorhabditis elegans as discovery platforms for genes involved in human alcohol use disorder. Alcohol Clin Exp Res. 2015;9(8):1292–311.

    CrossRef  CAS  Google Scholar 

  • Guo L, Zhen X. Sigma-2 receptor ligands: neurobiological effects. Curr Med Chem. 2015;22(8):989–1003.

    PubMed  CrossRef  CAS  Google Scholar 

  • Gwyn DG, Flumerfelt BA. Acetylcholinesterase in non-cholinergic neurones: a histochemical study of dorsal root ganglion cells in the rat. Brain Res. 1971;34(1):193–8.

    CAS  PubMed  CrossRef  Google Scholar 

  • van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet. 2008;4:e1000027.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA. Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc Natl Acad Sci U S A. 2008;105:728–33.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA. C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s disease. Dev Dyn. 2010;239(5):1282–95.

    CAS  PubMed  Google Scholar 

  • Helmcke KJ, Aschner M. Hormetic effect of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol. 2010;248(2):156–64.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hobert O. Specification of the nervous system. WormBook. 2005:1–19.

    Google Scholar 

  • Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;4211:82–187.

    Google Scholar 

  • Horiuchi Y, et al. Evolutional study on acetylcholine expression. Life Sci. 2003;72(15):1745–56.

    CAS  PubMed  CrossRef  Google Scholar 

  • Hu YO, et al. Phenotypic and behavioral defects induced by iron exposure can be transferred to progeny in Caenorhabditis elegans. Biomed Environ Sci. 2008;21(6):467–73.

    CAS  PubMed  CrossRef  Google Scholar 

  • Johnson CD, Russell RL. Multiple molecular forms of acetylcholinesterase in the nematode Caenorhabditis elegans. J Neurochem. 1983;41(1):30–46.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov. 2006;5(5):387–98.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kim DK, Lim HS, Kawasaki I, Shim YH, Vaikath NN, El-Agnaf OM, Lee HJ, Lee SJ. Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function. Autophagy. 2016;12:1849–63.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Knight AL, Yan XH, Hamamichi S, Ajjuri RR, Mazzulli JR, Zhang MW, Daigle JG, Zhang SY, Borom AR, Roberts LR, Lee SK, DeLeon SM, Viollet-Djelassi C, Krainc D, O’Donnell JM, Caldwell KA, Caldwell GA. The glycolytic enzyme, GPI, is a functionally conserved modifier of dopaminergic neurodegeneration in Parkinson’s models. Cell Metab. 2014;20:145–57.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kolson DL, Russell RL. A novel class of acetylcholinesterase, revealed by mutations, in the nematode Caenorhabditis elegans. J Neurogenet. 1985;2(2):93–110.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kraemer BC, et al. Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci U S A. 2003;100(17):9980–5.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lakso M, Vartiainen S, Moilanen AM, Sirvio J, Thomas JH, Nass R, et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem. 2003;86(1):165–72.

    CAS  PubMed  CrossRef  Google Scholar 

  • Levitan D, Greenwald I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature. 1995;377(6547):351–4.

    CAS  PubMed  CrossRef  Google Scholar 

  • Lewis JA, et al. Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience. 1980;5(6):967–89.

    CAS  PubMed  CrossRef  Google Scholar 

  • Lints R, Emmons SW. Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGF-beta family signaling pathway and a Hox gene. Development. 1999;126(24):5819–31.

    CAS  PubMed  CrossRef  Google Scholar 

  • Martinez-Finley EJ, Avila DS, Chakraborty S, Aschner M. Insights from Caenorhabditis elegans on the role of metals in neurodegenerative diseases. Metallomics. 2011;3(3):271–9.

    CAS  PubMed  CrossRef  Google Scholar 

  • Marvanova M, Nichols CD. Identification of neuroprotective compounds of Caenorhabditis elegans dopaminergic neurons against 6-OHDA. J Mol Neurosci. 2007;31(2):127–37.

    CAS  PubMed  Google Scholar 

  • Matthies DS, et al. The Caenorhabditis elegans choline transporter CHO-1 sustains acetylcholine synthesis and motor function in an activity-dependent manner. J Neurosci. 2006;26(23):6200–12.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Maulik M, Mitra S, Bult-Ito A, Taylor BE, Vayndorf EM. Behavioral phenotyping and pathological indicators of Parkinson's disease in C. elegans models. Front Genet 2017;8:77.

    Google Scholar 

  • McDonald PW, Jessen T, Field JR, Blakely RD. Dopamine signaling architecture in Caenorhabditis elegans. Cell Mol Neurobiol. 2006;26(4–6):593–618.

    CAS  PubMed  Google Scholar 

  • Melstrom PC, Williams PL. Reversible AChE inhibitors in C. elegans vs. rats, mice. Biochem Biophys Res Commun. 2007;357(1):200–5.

    CAS  PubMed  CrossRef  Google Scholar 

  • Mor DE, Daniels MJ, Ischiropoulos H. The usual suspects, dopamine and alpha-synuclein, conspire to cause neurodegeneration. Mov Disord. 2019;1-13

    Google Scholar 

  • Nass R. C. elegans genetic strategies to identify novel Parkinson’s disease-associated therapeutic targets and leads. In: Nass R, Przedborski S, editors. Parkinson’s disease: molecular and therapeutic insights from model systems. Boston: Academic; 2008. p. 261–8.

    Google Scholar 

  • Nass R, Blakely RD. The Caenorhabditis elegans dopaminergic system: opportunities for insights into dopamine transport and neurodegeneration. Annu Rev Pharmacol Toxicol. 2003;43:521–44.

    CAS  PubMed  CrossRef  Google Scholar 

  • Nass R, Hall DH, Miller DM, Blakely RD. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2002;99(5):3264–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nass R, Merchant KM, Ryan T. Caenorhabditis elegans in Parkinson's disease drug discovery: addressing an unmet medical need. Mol Interv. 2008;8(6):284–93.

    CAS  PubMed  CrossRef  Google Scholar 

  • Nees F. The nicotinic cholinergic system function in the human brain. Neuropharmacology. 2015;96(Pt B):289–301.

    CAS  PubMed  CrossRef  Google Scholar 

  • Nollen EA, Garcia SM, van Haaften G, Kim S, Chavez A, Morimoto RI, et al. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci U S A. 2004;101(17):6403–8.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nuttley WM, Atkinson-Leadbeater KP, Van Der Kooy D. Serotonin mediates food-odor associative learning in the nematode Caenorhabditiselegans. Proc Natl Acad Sci U S A. 2002;99(19):12449–54.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Okuda T, Haga T, Kanai Y, Endou H, Ishihara T, Katsura I. Identification and characterization of the high-affinity choline transporter. Nat Neurosci. 2000;3(2):120–5.

    CAS  PubMed  CrossRef  Google Scholar 

  • Pereira L, et al. A cellular and regulatory map of the cholinergic nervous system of C. elegans. elife. 2015;4

    Google Scholar 

  • Peres TV, Schettinger MRC, Chen P, Carvalho F, Avila DS, Bowman AB, Aschner M. Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC. Pharmacol Toxicol. 2016;17

    Google Scholar 

  • Rand JB. Genetic analysis of the cha-1-unc-17 gene complex in Caenorhabditis. Genetics. 1989;122(1):73–80.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rand JB. Acetylcholine WormBook. 2007:1–21.

    Google Scholar 

  • Rand JB, Russell RL. Choline acetyltransferase-deficient mutants of the nematode Caenorhabditis elegans. Genetics. 1984;106(2):227–48.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ranganathan R, Sawin ER, Trent C, Horvitz HR. Mutations in the Caenorhabditis elegans serotonin reuptake transporter MOD-5 reveal serotonin-dependent and -independent activities of fluoxetine. J Neurosci. 2001;21(16):5871–84.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rangel NA, Lin L, Rakariyatham K, Bach A, Trinh K, Clement MH, Srinivasan C. Unincorporated iron pool is linked to oxidative stress and iron levels in Caenorhabditis elegans. Biometals. 2012;25(5):971–85.

    CAS  PubMed  CrossRef  Google Scholar 

  • Riddle DL, Blumenthal T, Meyer BJ, Priess JR. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, editors. Introduction to C. elegans. 2nd ed. New York: Cold Spring Harbor; 1997.

    Google Scholar 

  • Ruan Q, Harrington AJ, Caldwell KA, Caldwell GA, Standaert DG. VPS41, a protein involved in lysosomal trafficking, is protective in Caenorhabditis elegans and mammalian cellular models of Parkinson's disease. Neurobiol Dis. 2010;37:330–8.

    CAS  PubMed  CrossRef  Google Scholar 

  • Sawin ER, Ranganathan R, Horvitz HR. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron. 2000;26(3):619–31.

    CAS  PubMed  CrossRef  Google Scholar 

  • Suh Y, Atzmon G, Cho MO, Hwang D, Liu B, Leahy DJ, Barzilai N, Cohen P. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A. 2008;105:3438–42.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Suo S, Ishiura S, Van Tol HH. Dopamine receptors in C. elegans. Eur J Pharmacol. 2004;500(1–3):159–66.

    CAS  PubMed  CrossRef  Google Scholar 

  • Tatsumi M, Groshan K, Blakely RD, Richelson E. Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997;340:249–58.

    CAS  PubMed  CrossRef  Google Scholar 

  • Tatsumi M, Groshan K, Blakely RD, Richelson E. Pharmacological profile of neuroleptics at human monoamine transporters. Eur J Pharmacol. 1999;368:277–83.

    CAS  PubMed  CrossRef  Google Scholar 

  • VanDuyn N, Settivari R, Wong G, Nass R. SKN-1/Nrf2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity. Toxicol Sci. 2010;118(2):613–24.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wang D, Xing X. Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. J Environ Sci (China). 2008;20(9):1132–7.

    CAS  CrossRef  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci. 1986;314(1165):1–340.

    CAS  Google Scholar 

  • Xing XJ, et al. Exposure to lead and mercury in young larvae induces more severe deficits in neuronal survival and synaptic function than in adult nematodes. Arch Environ Contam Toxicol. 2009;56(4):732–41.

    CAS  PubMed  CrossRef  Google Scholar 

  • Yanik MF, Cinar H, Cinar HN, Chisholm AD, Jin Y, Ben-Yakar A. Neurosurgery: functional regeneration after laser axotomy. Nature. 2004;432(7019):822.

    CAS  PubMed  CrossRef  Google Scholar 

  • Yankner BA, Lu T, Loerch P. The aging brain. Annu Rev Pathol. 2008;3:41–66.

    CAS  PubMed  CrossRef  Google Scholar 

  • Ye HY, Ye BP, Wang DY. Evaluation of the long-term memory for thermosensation regulated by neuronal calcium sensor-1 in Caenorhabditis elegans. Neurosci Bull. 2008;24(1):1–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yi B, et al. Small molecule modulator of sigma 2 receptor is neuroprotective and reduces cognitive deficits and neuroinflammation in experimental models of Alzheimer's disease. J Neurochem. 2017;140(4):561–75.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Acknowledgments

MLM and DCZ were supported by CAPES/PROEX fellowship program. LPA was supported by CAPES/PNPD fellowship program. MA was supported by grants from the National Institute of Environmental Health Sciences (NIEHS), R0110563, R01ES07331, and R01ES020852. FAAS was supported by grants from CNPq/FAPERGS/PRONEM and CAPES/PROEX.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Machado, M.L., Zamberlan, D.C., Arantes, L.P., Aschner, M., Soares, F.A. (2022). The Use and Predictability of C. elegans as an Alternative and Complementary Model in Neurotoxicological Studies: Focus on the Dopaminergic System. In: Filipov, N.M. (eds) Parkinsonism and the Environment. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-87451-3_1

Download citation