Skip to main content

Deep Grading Based on Collective Artificial Intelligence for AD Diagnosis and Prognosis

  • Conference paper
  • First Online:
Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data (IMIMIC 2021, TDA4MedicalData 2021)

Abstract

Accurate diagnosis and prognosis of Alzheimer’s disease are crucial to develop new therapies and reduce the associated costs. Recently, with the advances of convolutional neural networks, methods have been proposed to automate these two tasks using structural MRI. However, these methods often suffer from lack of interpretability, generalization, and can be limited in terms of performance. In this paper, we propose a novel deep framework designed to overcome these limitations. Our framework consists of two stages. In the first stage, we propose a deep grading model to extract meaningful features. To enhance the robustness of these features against domain shift, we introduce an innovative collective artificial intelligence strategy for training and evaluating steps. In the second stage, we use a graph convolutional neural network to better capture AD signatures. Our experiments based on 2074 subjects show the competitive performance of our deep framework compared to state-of-the-art methods on different datasets for both AD diagnosis and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avants, B.B., et al.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3), 2033–2044 (2011)

    Article  Google Scholar 

  2. Bron, E., et al.: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. Neuroimage 111, 562–579 (2015)

    Article  Google Scholar 

  3. Bron, E., et al.: Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease. NeuroImage Clin. 31, 102712 (2021)

    Article  Google Scholar 

  4. Coupé, P., et al.: Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease. NeuroImage Clin. 1(1), 141–152 (2012)

    Article  Google Scholar 

  5. Coupé, P., et al.: Lifespan changes of the human brain in Alzheimer’s disease. Nat. Sci. Rep. 9 (2019). Article number: 3998. https://www.nature.com/articles/s41598-019-39809-8

  6. Coupé, P., et al.: AssemblyNet: a large ensemble of CNNs for 3D whole brain MRI segmentation. Neuroimage 219, 117026 (2020)

    Article  Google Scholar 

  7. Ellis, K., et al.: The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int. Psychogeriatr. IPA 21, 672–687 (2009)

    Google Scholar 

  8. Foundas, A., et al.: Atrophy of the hippocampus, parietal cortex, and insula in Alzheimer’s disease: a volumetric magnetic resonance imaging study. Neuropsychiatry Neuropsychol. Behav. Neurol. 10(2), 81–89 (1997)

    Google Scholar 

  9. Frisoni, G., et al.: The clinical use of structural MRI in Alzheimer’s disease. Nat. Rev. Neurol. 6, 67–77 (2010)

    Article  Google Scholar 

  10. Gordon, B., et al.: Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol. 17, 241–250 (2018)

    Article  Google Scholar 

  11. Guan, H., Yang, E., Yap, P.-T., Shen, D., Liu, M.: Attention-guided deep domain adaptation for brain dementia identification with multi-site neuroimaging data. In: Albarqouni, S., et al. (eds.) DART/DCL-2020. LNCS, vol. 12444, pp. 31–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_4

  12. Hett, K., Ta, V.-T., Manjón, J.V., Coupé, P.: Graph of brain structures grading for early detection of Alzheimer’s disease. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 429–436. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_49

    Chapter  Google Scholar 

  13. Hosseini-Asl, E., et al.: Alzheimer’s disease diagnostics by adaptation of 3D convolutional network. In: IEEE International Conference on Image Processing (ICIP) (2016)

    Google Scholar 

  14. Huo, Y., et al.: 3D whole brain segmentation using spatially localized atlas network tiles. Neuroimage 194, 105–119 (2019)

    Article  Google Scholar 

  15. Jack, C., et al.: Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 27, 685–691 (2010)

    Google Scholar 

  16. Jack, C.R., Jr., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Article  Google Scholar 

  17. de Jong, L.W., et al.: Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain 131(12), 3277–3285 (2008)

    Article  Google Scholar 

  18. Kamraoui, R.A., et al.: Towards broader generalization of deep learning methods for multiple sclerosis lesion segmentation. arXiv arXiv:2012.07950 (2020)

  19. Kesslak, J.P., et al.: Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer’s disease. Neurology 41(1), 51 (1991)

    Article  Google Scholar 

  20. Kipf, T., et al.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  21. LaMontagne, P.J., et al.: OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. MedRxiv (2019)

    Google Scholar 

  22. Lebedeva, A.K., et al.: MRI-based classification models in prediction of mild cognitive impairment and dementia in late-life depression. Front. Aging Neurosci. 9, 13 (2017)

    Article  Google Scholar 

  23. Lian, C., et al.: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 880–893 (2020)

    Article  Google Scholar 

  24. Liu, M., et al.: Landmark-based deep multi-instance learning for brain disease diagnosis. Med. Image Anal. 43, 157–168 (2017)

    Article  Google Scholar 

  25. Liu, Y., et al.: Education increases reserve against Alzheimer’s disease-evidence from structural MRI analysis. Neuroradiology 54, 929–938 (2012). https://doi.org/10.1007/s00234-012-1005-0

    Article  Google Scholar 

  26. Lu, B., et al.: A practical Alzheimer disease classifier via brain imaging-based deep learning on 85,721 samples. BioRxiv (2021)

    Google Scholar 

  27. Malone, I.B., et al.: MIRIAD–public release of a multiple time point Alzheimer’s MR imaging dataset. Neuroimage 70, 33–36 (2013)

    Article  Google Scholar 

  28. Manjón, J.V., et al.: Robust MRI brain tissue parameter estimation by multistage outlier rejection. Magn. Reson. Med. 59(4), 866–873 (2008)

    Article  Google Scholar 

  29. Manjón, J.V., et al.: Adaptive non-local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31(1), 192–203 (2010)

    Article  Google Scholar 

  30. Manjón, J.V., et al.: NICE: non-local intracranial cavity extraction. Int. J. Biomed. Imaging (2014)

    Google Scholar 

  31. Nigri, E., et al.: Explainable deep CNNs for MRI-based diagnosis of Alzheimer’s disease. In: International Joint Conference on Neural Networks (IJCNN) (2020)

    Google Scholar 

  32. Tong, T., et al.: A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer’s disease. IEEE Trans. Biomed. Eng. 64(1), 155–165 (2016)

    Article  Google Scholar 

  33. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  34. Wachinger, C., et al.: Domain adaptation for Alzheimer’s disease diagnostics. Neuroimage 139, 470–479 (2016)

    Article  Google Scholar 

  35. Wen, J., et al.: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Med. Image Anal. 63, 101694 (2020)

    Article  Google Scholar 

  36. Yee, E., et al.: Construction of MRI-based Alzheimer’s disease score based on efficient 3D convolutional neural network: comprehensive validation on 7,902 images from a multi-center dataset. J. Alzheimers Dis. 79, 1–12 (2020)

    Google Scholar 

  37. Zhang, H., et al.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  38. Zhang, X., et al.: An explainable 3D residual self-attention deep neural network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE J. Biomed. Health Inform. (2021)

    Google Scholar 

Download references

Acknowledgments

This work benefited from the support of the project DeepvolBrain of the French National Research Agency (ANR-18-CE45-0013). This study was achieved within the context of the Laboratory of Excellence TRAIL ANR-10-LABX-57 for the BigDataBrain project. Moreover, we thank the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02), the French Ministry of Education and Research, and the CNRS for DeepMultiBrain project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huy-Dung Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, HD., Clément, M., Mansencal, B., Coupé, P. (2021). Deep Grading Based on Collective Artificial Intelligence for AD Diagnosis and Prognosis. In: Reyes, M., et al. Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data. IMIMIC TDA4MedicalData 2021 2021. Lecture Notes in Computer Science(), vol 12929. Springer, Cham. https://doi.org/10.1007/978-3-030-87444-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87444-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87443-8

  • Online ISBN: 978-3-030-87444-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics