Skip to main content

Abstract

Alzheimer’s disease is a debilitating disease in the elderly, and is an increasing burden to the society due to an aging population. In this paper, we apply topological data analysis to structural MRI scans of the brain, and show that topological invariants make accurate predictors for Alzheimer’s. Using the construct of Betti Curves, we first show that topology is a good predictor of Age. Then we develop an approach to factor out the topological signature of age from Betti curves, and thus obtain accurate detection of Alzheimer’s disease. Experimental results show that topological features used with standard classifiers perform comparably to recently developed convolutional neural networks. These results imply that topology is a major aspect of structural changes due to aging and Alzheimer’s. We expect this relation will generate further insights for both early detection and better understanding of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ameertg/BrainAgingTDA.

References

  1. Aderghal, K., Benois-Pineau, J., Afdel, K., Gwenaëlle, C.: FuseMe: classification of sMRI images by fusion of deep CNNs in 2D+\(\varepsilon \) projections. In: Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing, pp. 1–7 (2017)

    Google Scholar 

  2. Andreeva, R., Fontanella, A., Giarratano, Y., Bernabeu, M.O.: DR detection using optical coherence tomography angiography (OCTA): a transfer learning approach with robustness analysis. In: International Workshop on Ophthalmic Medical Image Analysis, pp. 11–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63419-3_2

  3. Bäckström, K., Nazari, M., Gu, I.Y.H., Jakola, A.S.: An efficient 3D deep convolutional network for Alzheimer’s disease diagnosis using MR images. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 149–153. IEEE (2018)

    Google Scholar 

  4. Beheshti, I., Demirel, H., Initiative, A.D.N., et al.: Feature-ranking-based Alzheimer’s disease classification from structural MRI. Magn. Reson. Imaging 34(3), 252–263 (2016)

    Article  Google Scholar 

  5. Beltramo, G., Andreeva, R., Giarratano, Y., Bernabeu, M.O., Sarkar, R., Skraba, P.: Euler characteristic surfaces. arXiv preprint arXiv:2102.08260 (2021)

  6. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chung, Y.M., Lawson, A.: Persistence curves: a canonical framework for summarizing persistence diagrams. arXiv preprint arXiv:1904.07768 (2019)

  8. Cole, J.H., et al.: Brain age predicts mortality. Mol. Psychiatry 23(5), 1385–1392 (2018)

    Article  Google Scholar 

  9. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2010)

    Google Scholar 

  10. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  11. Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Nat. Acad. Sci. 97(20), 11050–11055 (2000)

    Google Scholar 

  12. Fischl, B., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002)

    Article  Google Scholar 

  13. Fjell, A.M., et al.: High consistency of regional cortical thinning in aging across multiple samples. Cereb. Cortex 19(9), 2001–2012 (2009)

    Article  Google Scholar 

  14. Franke, K., Gaser, C.: Longitudinal changes in individual brainAGE in healthy aging, mild cognitive impairment, and Alzheimer’s disease. GeroPsych J. Gerontopsychol. Geriatr. Psychiat. 25(4), 235 (2012)

    Google Scholar 

  15. Franke, K., Gaser, C.: Ten years of brainAGE as a neuroimaging biomarker of brain aging: what insights have we gained? Front. Neurol. 10, 789 (2019)

    Article  Google Scholar 

  16. Garin, A., Tauzin, G.: A topological “reading” lesson: classification of MNIST using TDA. In: 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1551–1556. IEEE (2019)

    Google Scholar 

  17. Giarratano, Y., et al.: A framework for the discovery of retinal biomarkers in optical coherence tomography angiography (OCTA). In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) OMIA 2020. LNCS, vol. 12069, pp. 155–164. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63419-3_16

    Chapter  Google Scholar 

  18. Habes, M., et al.: Advanced brain aging: relationship with epidemiologic and genetic risk factors, and overlap with Alzheimer disease atrophy patterns. Transl. Psychiatr. 6(4), e775–e775 (2016)

    Article  Google Scholar 

  19. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  20. Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE (1995)

    Google Scholar 

  21. LaMontagne, et al.: OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. MedRxiv (2019)

    Google Scholar 

  22. Liu, J., et al.: Applications of deep learning to MRI images: a survey. Big Data Min. Anal. 1(1), 1–18 (2018)

    Article  Google Scholar 

  23. Ouyang, M., Kang, H., Detre, J.A., Roberts, T.P., Huang, H.: Short-range connections in the developmental connectome during typical and atypical brain maturation. Neurosci. Biobehav. Rev. 83, 109–122 (2017)

    Article  Google Scholar 

  24. Papakostas, G.A., Savio, A., Graña, M., Kaburlasos, V.G.: A lattice computing approach to Alzheimer’s disease computer assisted diagnosis based on MRI data. Neurocomputing 150, 37–42 (2015)

    Article  Google Scholar 

  25. Patterson, C., et al.: World Alzheimer report 2018 (2018)

    Google Scholar 

  26. Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: a survey. IEEE Rev. Biomed. Eng. 14, 156–180 (2020)

    Google Scholar 

  27. Rieck, B., et al.: Uncovering the topology of time-varying fMRI data using cubical persistence. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  28. Tauzin, G., Lupo, U., Tunstall, L., Pérez, J.B., Caorsi, M., Medina-Mardones, A.M., Dassatti, A., Hess, K.: giotto-tda: a topological data analysis toolkit for machine learning and data exploration. J. Mach. Learn. Res. 22, 39–1 (2021)

    Google Scholar 

  29. Vemuri, P., Jack, C.R.: Role of structural MRI in Alzheimer’s disease. Alzheimer’s Res. Ther. 2(4), 1–10 (2010)

    Google Scholar 

  30. Wen, J., Thibeau-Sutre, E., et al.: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Med. Image Anal. 63, 101694 (2020)

    Google Scholar 

  31. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

RA is supported by the UKRI (grant EP/S02431X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameer Saadat-Yazdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saadat-Yazdi, A., Andreeva, R., Sarkar, R. (2021). Topological Detection of Alzheimer’s Disease Using Betti Curves. In: Reyes, M., et al. Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data. IMIMIC TDA4MedicalData 2021 2021. Lecture Notes in Computer Science(), vol 12929. Springer, Cham. https://doi.org/10.1007/978-3-030-87444-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87444-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87443-8

  • Online ISBN: 978-3-030-87444-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics