Skip to main content

Industry 4.0 Impacts on the Sustainable Product, Process, and Material

  • Chapter
  • First Online:
Approaches, Opportunities, and Challenges for Eco-design 4.0
  • 352 Accesses

Abstract

Design for the environment is mainly discussed from three perspectives of material, product, and process. The implications of Industry 4.0 technology on these three perspectives were not the prime focus of prior research. In this chapter, a synthesis of DfE literature is performed to consider (1) the new trends and research practices, (2) the tools and methods, (3) data-driven and product-service systems-oriented design, and (4) the principles of DfE. Then, based on the gaps in these four pillars, the impacts of five Industry 4.0 technologies on material, product, and process are discussed. The research gaps in each part considering product’s life cycle (design, manufacturing, use phase, and EoL) and in three horizons of strategic, tactical, and operational are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • C. Bai, P. Dallasega, G. Orzes, J. Sarkis, Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ. 229, 107776 (2020)

    Article  Google Scholar 

  • T.A. Bhamra, Ecodesign: The search for new strategies in product development. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 218(5), 557–569 (2004)

    Article  Google Scholar 

  • T. Bhamra, R.J. Hernandez, Thirty years of design for sustainability: An evolution of research, policy, and practice. Design Sci. 7, e2 (2021)

    Article  Google Scholar 

  • S.H. Bonilla, H.R. Silva, M. Terra da Silva, R. Franco Gonçalves, J.B. Sacomano, Industry 4.0 and sustainability implications: A scenario-based analysis of the impacts and challenges. Sustainability 10(10), 3740 (2018)

    Article  Google Scholar 

  • J. Bonvoisin, Limits of ecodesign: The case for open source product development. Int. J. Sustain. Eng. 10(4–5), 198–206 (2017)

    Article  Google Scholar 

  • M. Borchardt, L.A. Poltosi, M.A. Sellitto, G.M. Pereira, Adopting ecodesign practices: Case study of a midsized automotive supplier. Environ. Qual. Manag. 19(1), 7–22 (2009)

    Article  Google Scholar 

  • M.D. Bovea, V. Pérez-Belis, A taxonomy of ecodesign tools for integrating environmental requirements into the product design process. J. Clean. Prod. 20(1), 61–71 (2012)

    Article  Google Scholar 

  • E. Cagno, A. Neri, M. Negri, C.A. Bassani, T. Lampertico, The role of digital technologies in operationalizing the circular economy transition: A systematic literature review. Appl. Sci. 11(8), 3328 (2021)

    Article  Google Scholar 

  • P. Cicconi, Eco-design and eco-materials: An interactive and collaborative approach. Sustain. Mater. Technol. 23, e00135 (2020)

    Google Scholar 

  • B.S. Costa, A.C. Bernardes, J.V. Pereira, V.H. Zampa, V.A. Pereira, G.F. Matos, …, A.F. Silva, Artificial intelligence in automated sorting in trash recycling, in Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (SBC, 2018), pp. 198–205.

    Google Scholar 

  • S. da Costa Fernandes, D.C. Pigosso, T.C. McAloone, H. Rozenfeld, Towards product-service system oriented to circular economy: A systematic review of value proposition design approaches. J. Clean. Prod. 257, 120507 (2020)

    Article  Google Scholar 

  • J. de Aguiar, L. de Oliveira, J.O. da Silva, D. Bond, R.K. Scalice, D. Becker, A design tool to diagnose product recyclability during product design phase. J. Clean. Prod. 141, 219–229 (2017)

    Article  Google Scholar 

  • O. Diegel, P. Kristav, D. Motte, B. Kianian, Additive manufacturing and its effect on sustainable design, in Handbook of sustainability in additive manufacturing, (Springer, Singapore, 2016), pp. 73–99

    Chapter  Google Scholar 

  • E. Dostatni, J. Diakun, D. Grajewski, R. Wichniarek, A. Karwasz, Automation of the ecodesign process for Industry 4.0, in International Conference on Intelligent Systems in Production Engineering and Maintenance, (Springer, Cham, 2018a), pp. 533–542

    Google Scholar 

  • E. Dostatni, I. Rojek, A. Hamrol, The use of machine learning method in concurrent ecodesign of products and technological processes, in Advances in Manufacturing, (Springer, Cham, 2018b), pp. 321–330

    Chapter  Google Scholar 

  • Ellen MacArthur Foundation, Artificial Intelligence and the Circular Economy: AI as a Tool to Accelerate the Transition, 2019. https://www.ellenmacarthurfoundation.org/assets/downloads/Artificial-intelligence-and-the-circular-economy.pdf

  • C. Enyoghasi, F. Badurdeen, Industry 4.0 for sustainable manufacturing: Opportunities at the product, process, and system levels. Resour. Conserv. Recycl. 166, 105362 (2021)

    Article  Google Scholar 

  • J. Faludi, S. Hoffenson, S.Y. Kwok, M. Saidani, S.I. Hallstedt, C. Telenko, V. Martinez, A research roadmap for sustainable design methods and tools. Sustainability 12(19), 8174 (2020)

    Article  Google Scholar 

  • Y. Feng, Y. Zhao, H. Zheng, Z. Li, J. Tan, Data-driven product design toward intelligent manufacturing: A review. Int. J. Adv. Robot. Syst. 17(2), 1729881420911257 (2020)

    Article  Google Scholar 

  • M. Ghobakhloo, Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 252, 119869 (2020)

    Article  Google Scholar 

  • F. Gu, B. Ma, J. Guo, P.A. Summers, P. Hall, Internet of things and Big Data as potential solutions to the problems in waste electrical and electronic equipment management: An exploratory study. Waste Manag. 68, 434–448 (2017)

    Article  Google Scholar 

  • M. Holland, J. Stjepandić, C. Nigischer, Intellectual property protection of 3D print supply chain with blockchain technology, in 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC) (IEEE, 2018), pp. 1–8

    Google Scholar 

  • S.S. Kamble, A. Gunasekaran, S.A. Gawankar, Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Saf. Environ. Prot. 117, 408–425 (2018)

    Article  Google Scholar 

  • G. Kane, Building a sustainable supply chain (Routledge, 2017)

    Google Scholar 

  • A. Karwasz, J. Trojanowska, Using CAD 3D system in ecodesign—case study, in Efficiency in Sustainable Supply Chain, (Springer, Cham, 2017), pp. 137–160

    Chapter  Google Scholar 

  • S. Keivanpour, D.A. Kadi, Perspectives for application of the internet of things and big data analytics on end of life aircraft treatment. Int. J. Sustain. Aviat. 4(3–4), 202–220 (2018)

    Article  Google Scholar 

  • H. Kim, F. Cluzel, Y. Leroy, B. Yannou, G. Yannou-Le Bris, Research perspectives in ecodesign. Design Sci. 6, e7 (2020)

    Article  Google Scholar 

  • J. Kim, M. Saidani, H.M. Kim, Designing an optimal modular-based product family under intellectual property and sustainability considerations. J. Mech. Design 143(11), 112002 (2021)

    Article  Google Scholar 

  • V. Lofthouse, Ecodesign tools for designers: Defining the requirements. J. Clean. Prod. 14(15–16), 1386–1395 (2006)

    Article  Google Scholar 

  • C. Luttropp, J. Lagerstedt, EcoDesign and the ten golden rules: Generic advice for merging environmental aspects into product development. J. Clean. Prod. 14(15–16), 1396–1408 (2006)

    Article  Google Scholar 

  • F. Mami, J.P. Revéret, S. Fallaha, M. Margni, Evaluating eco-efficiency of 3D printing in the aeronautic industry. J. Ind. Ecol. 21(S1), S37–S48 (2017)

    Article  Google Scholar 

  • F. Mathieux, D. Brissaud, P. Zwolinski, Product ecodesign and materials: Current status and future prospects. arXiv preprint arXiv:0711.1788 (2007)

    Google Scholar 

  • Mistbreaker Website, (n.d.), http://www.mistbreaker.com/sustainability/artificial-intelligence-put-use-recycling/

  • J. Oláh, N. Aburumman, J. Popp, M.A. Khan, H. Haddad, N. Kitukutha, Impact of Industry 4.0 on environmental sustainability. Sustainability 12(11), 4674 (2020)

    Article  Google Scholar 

  • D.C.A. Pigosso, H. Rozenfeld, T.C. McAloone, Ecodesign maturity model: A management framework to support ecodesign implementation into manufacturing companies. J. Clean. Prod. 59, 160–173 (2013)

    Article  Google Scholar 

  • D.C.A. Pigosso, T.C. McAloone, H. Rozenfeld, Characterization of the state-of-the-art and identification of main trends for Ecodesign tools and methods: Classifying three decades of research and implementation. J. Indian Inst. Sci. 95(4), 405–428 (2015)

    Google Scholar 

  • S. S. Rattan, Strength of materials, Tata McGraw-Hill Education, 2008, https://books.google.ca/books/about/Strength_of_Materials.html?id=oXBLj7Jrr7YC

  • I. Rojek, E. Dostatni, Artificial neural network-supported selection of materials in ecodesign, in International Scientific-Technical Conference Manufacturing, (Springer, Cham, 2019), pp. 422–431

    Google Scholar 

  • I. Rojek, E. Dostatni, Machine learning methods for optimal compatibility of materials in ecodesign. Bull. Polish Acad. Sci. Techn. Sci., 68(2) (2020)

    Google Scholar 

  • I. Rojek, D. Mikołajewski, E. Dostatni, Digital twins in product lifecycle for sustainability in manufacturing and maintenance. Appl. Sci. 11(1), 31 (2021)

    Article  Google Scholar 

  • M. Rossi, M. Germani, A. Zamagni, Review of ecodesign methods and tools. Barriers and strategies for an effective implementation in industrial companies. J. Clean. Prod. 129, 361–373 (2016)

    Article  Google Scholar 

  • R.K. Scalice, D. Becker, R.C. Silveira, Developing a new compatibility table for design for recycling. Product: Management and Development 7(2), 141–148 (2009)

    Google Scholar 

  • K. Schischke, M. Hagelüken, S. Bai, fenhagen, G., An introduction to ecodesign strategies–why, what and how?. Fraunhofer IZM, Berlin, Germany. Ecodesign implementation into manufacturing companies. J. Clean. Prod. 59(2013), 160–173 (2005)

    Google Scholar 

  • C. Thomas, I. Maître, R. Symoneaux, Consumer-led eco-development of food products: A case study to propose a framework. Br. Food J. (2021)

    Google Scholar 

  • J. Trojanowska, A. Karwasz, J.M. Machado, M.L.R. Varela, Virtual reality based ecodesign, in Efficiency in Sustainable Supply Chain, (Springer, Cham, 2017), pp. 119–135

    Chapter  Google Scholar 

  • C. Van Hemel, J. Cramer, Barriers and stimuli for ecodesign in SMEs. J. Clean. Prod. 10(5), 439–453 (2002)

    Article  Google Scholar 

  • A. Vanderploeg, S.E. Lee, M. Mamp, The application of 3D printing technology in the fashion industry. Int. J. Fashion Design Technol. Educ. 10(2), 170–179 (2017)

    Article  Google Scholar 

  • Y. Zhang, S. Ren, Y. Liu, S. Si, A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. J. Clean. Prod. 142, 626–641 (2017)

    Article  Google Scholar 

  • P. Zheng, Y. Lin, C.H. Chen, X. Xu, Smart, connected open architecture product: An IT-driven co-creation paradigm with lifecycle personalization concerns. Int. J. Prod. Res. 57(8), 2571–2584 (2019)

    Article  Google Scholar 

  • P. Zheng, X. Xu, C.H. Chen, A data-driven cyber-physical approach for personalised smart, connected product co-development in a cloud-based environment. J. Intell. Manuf. 31(1), 3–18 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keivanpour, S. (2022). Industry 4.0 Impacts on the Sustainable Product, Process, and Material. In: Approaches, Opportunities, and Challenges for Eco-design 4.0 . Springer, Cham. https://doi.org/10.1007/978-3-030-87371-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87371-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87370-7

  • Online ISBN: 978-3-030-87371-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics