Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 97))

  • 638 Accesses

Abstract

Photopolymerization is based on a chemical reaction. The material is initially in liquid to viscous form. As described in Chap. 2, different technologies for printing polymers exist. For the modeling, the process plays a minor role, since only the material parameters and the geometric structure differ. This chapter concentrates on the Additive Manufacturing process according to Stieghorst (2017). However, the modeling approach can also be applied to stereolithography or polyjet printing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • B. Boley, J. Weiner, Theory of Thermal Stresses (Wiley, London, 1960)

    MATH  Google Scholar 

  • H.G. Elias, Polymere: Von Monomeren Und Makromolekülen Zu Werkstoffen; Eine Einführung (UTB, Uni-Taschenbücher-GmbH, 1996)

    Google Scholar 

  • P. Hartmann, Simulation of Thermo-Chemo-Mechanical Coupled Additive Manufacturing Processes using Peridynamics. Ph.D. thesis, Leibniz Universität Hannover, Germany (2019)

    Google Scholar 

  • P. Hartmann, C. Weißenfels, P. Wriggers, A curing model for the numerical simulation within Additive Manufacturing of soft polymers using Peridynamics. Comput. Part. Mech. 8(2), 369–388 (2021)

    Article  Google Scholar 

  • M. Hossain, P. Steinmann, Degree of cure-dependent modelling for polymer curing processes at small-strain. Part I: Consistent reformulation. Comput. Mech. 53(4), 777–787 (2014)

    Article  MathSciNet  Google Scholar 

  • M.S. Kiasat, Curing Shrinkage and Residual Stresses in Viscoelastic Thermosetting Resins and Composites. Ph.D. thesis, TU Delft, Netherlands (2000)

    Google Scholar 

  • J. Korelc, P. Wriggers, Automation of Finite Element Methods (Springer, Berlin, 2016)

    Google Scholar 

  • J. Korelc, S. Stupkiewicz, Closed-form matrix exponential and its application in finite-strain plasticity. In. J. Numer. Methods Eng. 98(13), 960–987 (2014)

    Article  MathSciNet  Google Scholar 

  • R. Landgraf, Modellierung und Simulation der Aushärtung polymerer Werkstoffe. Ph.D. thesis, Technische Universität Chemnitz, Germany (2015)

    Google Scholar 

  • R. Landgraf, M. Rudolph, R. Scherzer, J. Ihlemann, Modelling and simulation of adhesive curing processes in bonded piezo metal composites. Comput. Mech. 54(2), 547–565 (2014)

    Article  Google Scholar 

  • A. Lion, P. Höfer, On the phenomenological representation of curing phenomena in continuum mechanics. Arch. Mech. 59(1), 59–89 (2007)

    MATH  Google Scholar 

  • A. Lion, M. Johlitz, On the representation of chemical ageing of rubber in continuum mechanics. Int. J. Solids Struct. 49(10), 1227–1240 (2012)

    Article  Google Scholar 

  • E. Madenci, E. Oterkus, Peridynamic Theory and Its Applications (Springer, Berlin, 2014)

    Google Scholar 

  • S. Oterkus, E. Madenci, A. Agwai, Peridynamic thermal diffusion. J. Comput. Phys. 265, 71–96 (2014)

    Article  MathSciNet  Google Scholar 

  • J.C. Simo, Numerical Analysis and Simulation of Plasticity. Handbook of Numerical Analysis VI (Elsevier Science B.V., 1998)

    Google Scholar 

  • S. Sourour, M.R. Kamal, Differential scanning calorimetry of epoxy cure: isothermal cure kinetics. Thermochimica Acta 14(1–2), 41–59 (1976)

    Article  Google Scholar 

  • J. Stieghorst, Entwicklung eines additiven Fertigungsverfahrens für Silikonkautschuke zur Herstellung von flexiblen Neuroimplantaten in der Medizintechnik. Ph.D. thesis, Leibniz Universität Hannover, Germany (2017)

    Google Scholar 

  • P. Wriggers, Nonlinear Finite Element Methods (Springer Science & Business Media, Berlin, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Weißenfels .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weißenfels, C. (2022). Modeling Direct Poly Printing. In: Simulation of Additive Manufacturing using Meshfree Methods. Lecture Notes in Applied and Computational Mechanics, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-030-87337-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87337-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87336-3

  • Online ISBN: 978-3-030-87337-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics