Skip to main content

Modeling Selective Laser Melting

  • Chapter
  • First Online:
Simulation of Additive Manufacturing using Meshfree Methods

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 97))

Abstract

Selective Laser Melting (SLM) is a laser powder bed fusion process that frequently comes into use for printing metal or ceramic structures. A positive connection between the layers can only be achieved by a remelt of the particles with the underlying layer. The key factor for successful printing is the control of the melt pool, which determines the shape and properties of the printed part. The parameters of the 3D printer must be set so that unwanted side effects can be excluded. The transition from the powder to the final printed part is a sequence of numerous physical processes that must be represented by the simulation. Suitable experimental tests are required to validate the models. Both aspects are presented in the first two sections. The differential equations are solved using SPH and the OTM method. The results of both schemes are compared and evaluated. The presented modeling approaches can also be used for Laser Metal Deposition or other laser powder bed fusion processes such as Electron Beam Melting or Selective Laser Sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces, 6th edn. (Wiley Interscience, New York, 1997)

    Google Scholar 

  • S.I. Anisimov, V.A. Khokhlov Instabilities in Laser-Matter Interaction (CRC press, 1995)

    Google Scholar 

  • A. Bauereiß, T. Scharowsky, C. Körner, Defect generation and propagation mechanism during additive manufacturing by selective beam melting. J. Mater. Process. Technol. 214(11), 2522–2528 (2014)

    Article  Google Scholar 

  • D. Bäuerle, Laser Processing and Chemistry (Springer Science & Business Media, 2013)

    Google Scholar 

  • T. Belytschko, R.L. Chiapetta, H.D. Bartel, Efficient large scale non-linear transient analysis by finite elements. Int. J. Numer. Methods Eng. 10(3), 579–596 (1976)

    Article  Google Scholar 

  • P. Bidare, I. Bitharas, R.M. Ward, M.M. Attallah, A.J. Moore, Fluid and particle dynamics in laser powder bed fusion. Acta Materialia 142, 107–120 (2018)

    Article  Google Scholar 

  • C. Bonacina, G. Comini, A. Fasano, M. Primicerio, Numerical solution of phase-change problems. Int. J. Heat Mass Transf. 16(10), 1825–1832 (1973)

    Article  Google Scholar 

  • E.Y. Bormashenko, Physics of Wetting: Phenomena and Applications of Fluids on Surfaces (Walter de Gruyter GmbH & Co KG, 2017)

    Google Scholar 

  • S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Courier Corporation, 2013)

    Google Scholar 

  • T.H.C. Childs, C. Hauser, M. Badrossamay, Selective laser sintering (melting) of stainless and tool steel powders: experiments and modelling. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 219(4), 339–357 (2005)

    Article  Google Scholar 

  • M. Chiumenti, Constitutive Modeling and Numerical Analysis of Thermo-Mechanical Phase Change Systems. Ph.D. thesis, UPC BarcelonaTech, Spain (1998)

    Google Scholar 

  • P.W. Cleary, J.J. Monaghan, Conduction modelling using Smoothed Particle Hydrodynamics. J. Comput. Phys. 148(1), 227–264 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • The International Nickel Company, editor, Mechanical and Physical Properties of the Austenitic Chromium-Nickel Stainless Steels at elevated Temperatures, 3rd edn. (INCO Databooks, New York, 1968)

    Google Scholar 

  • R. Courant, K. Friedrichs, H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 100(1), 32–74 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  • A.J.C. Crespo, J.M. Domínguez, B.D. Rogers, M. Gómez-Gesteira, S. Longshaw, R. Canelas, R. Vacondio, A. Barreiro, O. García-Feal, DualSPHysics: open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH). Comput. Phys. Commun. 187, 204–216 (2015)

    Article  MATH  Google Scholar 

  • S. Dietrich, M. Wunderer, A. Huissel, M.F. Zaeh, A new approach for a flexible powder production for additive manufacturing. Procedia Manuf. 6, 88–95 (2016)

    Article  Google Scholar 

  • EPMA. Introduction to Additive Manufacturing technology: a guide for designers and engineers (2016)

    Google Scholar 

  • P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, R. Glardon, Sintering of commercially pure titanium powder with a Nd: YAG laser source. Acta Materialia 51(6), 1651–1662 (2003)

    Article  Google Scholar 

  • J.P. Fürstenau, C. Weißenfels, P. Wriggers, Free surface tension using ISPH. Comput. Mech. 95, 175–187 (2019)

    Google Scholar 

  • J.P. Fürstenau, H. Wessels, C. Weißenfels, P. Wriggers, Generating virtual process maps of SLM using powder scale SPH simulations. Comput. Part. Mech. 339, 91–114 (2019)

    Google Scholar 

  • R. Ganeriwala, T.I. Zohdi, A coupled discrete element-finite difference model of Selective Laser Sintering. Granul. Matter 18(2) (2016). ISSN 1434-5021

    Google Scholar 

  • J. Goldak, A. Chakravarti, M. Bibby, A new finite element model for welding heat sources. Metall. Trans. B 15(2), 299–305 (1984)

    Article  Google Scholar 

  • J.A. Goldak, M. Akhlaghi, Computational Welding Mechanics (Springer, New York, 2005)

    Google Scholar 

  • D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2012)

    Article  Google Scholar 

  • V. Gunenthiram, P. Peyre, M. Schneider, M. Dal, F. Coste, R. Fabbro, Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel. J. Laser Appl. 29, 022303 (2017)

    Google Scholar 

  • A.V. Gusarov, I. Yadroitsev, P. Bertrand, I. Smurov, Model of radiation and heat transfer in laser-powder interaction zone at Selective Laser Melting. J. Heat Transf. 131(7), 072101 (2009)

    Google Scholar 

  • A.V. Gusarov, M. Pavlov, I. Smurov, Residual stresses at laser surface remelting and additive manufacturing. Phys. Procedia 12, 248–254 (2011)

    Article  Google Scholar 

  • R.J. Hebert, Metallurgical aspects of powder bed metal additive manufacturing. J. Mater. Sci. 51(3), 1165–1175 (2016)

    Article  Google Scholar 

  • J. Hecht, Understanding Lasers: An entry level Guide (Wiley-IEEE Press, 2019)

    Google Scholar 

  • M. Hirschler, G. Oger, U. Nieken, D. Le Touzé, Modeling of droplet collisions using smoothed particle hydrodynamics. Int. J. Multiph. Flow 95, 175–187 (2017)

    Article  MathSciNet  Google Scholar 

  • T.R.J. Hughes, The Finite Element Method (Prentice Hall, Englewood Cliffs, New Jersey, 1987)

    MATH  Google Scholar 

  • Q. Jiang, Z. Wen, Thermodynamics of Materials (Springer Science & Business Media, 2011)

    Google Scholar 

  • S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Materialia 108, 36–45 (2016)

    Article  Google Scholar 

  • W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 214(12), 2915–2925 (2014)

    Article  Google Scholar 

  • W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M. Rubenchiks, Laser powder bed fusion Additive Manufacturing of metals; physics, computational, and materials challenges. Appl. Phys. Rev. 2(4), 041304 (2015)

    Google Scholar 

  • A. Klassen, T. Scharowsky, C. Körner, Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods. J. Phys. D: Appl. Phys. 47(27), 275303 (2014)

    Google Scholar 

  • C. Kleinstreuer, Engineering Fluid Dynamics: An Interdisciplinary Systems Approach (Cambridge University Press, 1997)

    Google Scholar 

  • J. Korelc, S. Stupkiewicz, Closed-form matrix exponential and its application in finite-strain plasticity. Int. J. Numer. Methods Eng. 98(13), 960–987 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • J.P. Kruth, L. Froyen, J. van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, Selective laser melting of iron-based powder. J. Mater. Process. Technol. 149(1–3), 616–622 (2004)

    Article  Google Scholar 

  • A. Lawley, Preparation of metal powders. Ann. Rev. Mater. Sci. 8(1), 49–71 (1978)

    Article  Google Scholar 

  • C. Limmaneevichitr, S. Kou, Experiments to simulate effect of Marangoni convection on weld pool shape. Weld. J. 79(8), 231–237 (2000)

    Google Scholar 

  • S.C.H. Lu, K.S. Pister, Decomposition of deformation and representation of the free energy function for isotropic thermoelastic solids. Int. J. Solids Struct. 11(7–8), 927–934 (1975)

    Article  MATH  Google Scholar 

  • J. Lubliner, Plasticity Theory (Macillan, London, 1990)

    MATH  Google Scholar 

  • M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King, Denudation of metal powder layers in laser powder bed fusion processes. Acta Materialia 114, 33–42 (2016)

    Article  Google Scholar 

  • P. Mercelis, J.P. Kruth, Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 12(5), 254–265 (2006)

    Article  Google Scholar 

  • J.J. Monaghan, A. Kos, Solitary waves on a cretan beach. J. Waterw. Port Coast. Ocean Eng. 125(3), 145–155 (1999)

    Article  Google Scholar 

  • N.M. Newmark, A method of computation for structural dynamics, in Proceedings of ASCE, Journal of Engineering Mechanics (American Society of Civil Engineers, 1959), pp. 557–587

    Google Scholar 

  • W. Polifke, Wärmeübertragung: Grundlagen, analytische und numerische Methoden (Pearson Deutschland GmbH, 2009)

    Google Scholar 

  • J.K. Prescott, R.A. Barnum, On powder flowability. Pharm. Technol. 24(10), 60–85 (2000)

    Google Scholar 

  • A.M. Prokhorov, Laser Heating of Metals (CRC Press, 2018)

    Google Scholar 

  • C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, M.M. Attallah, On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Materialia 96, 72–79 (2015)

    Article  Google Scholar 

  • R. Rai, J.W. Elmer, T.A. Palmer, T. DebRoy, Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium. J. Phys. D Appl. Phys. 40(18), 5753 (2007)

    Article  Google Scholar 

  • P.W. Randles, L.D. Libersky, Smoothed Particle Hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 375–408 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • V. Semak, A. Matsunawa, The role of recoil pressure in energy balance during laser materials processing. J. Phys. D Appl. Phys. 30(18), 2541 (1997)

    Article  Google Scholar 

  • M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, F. Abe, Residual stress within metallic model made by selective laser melting process. CIRP Ann. 53(1), 195–198 (2004)

    Article  Google Scholar 

  • J.C. Simo, Numerical Analysis and Simulation of Plasticity. Handbook of Numerical Analysis VI. Elsevier Science B.V. (1998)

    Google Scholar 

  • W.M. Steen, J. Mazumder, Laser Material Processing, 6th edn. (Springer science & Business media, 2010)

    Google Scholar 

  • L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, J.P. Kruth, A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Materialia 58(9), 3303–3312 (2010)

    Article  Google Scholar 

  • N.K. Tolochko, S.E. Mozzharov, I.A. Yadroitsev, T. Laoui, L. Froyen, V.I. Titov, M.B. Ignatiev, Balling processes during selective laser treatment of powders. Rapid Prototyp. J. 10(2), 78–87 (2004)

    Article  Google Scholar 

  • M. von Allmen, A. Blatter, Laser-beam Interactions with Materials: Physical Principles and Applications, vol. 2 (Springer Science & Business Media, 2013)

    Google Scholar 

  • D. Wang, S. Wu, F. Fu, S. Mai, Y. Yang, Y. Liu, C. Song, Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties. Mater. Des. 117, 121–130 (2017)

    Article  Google Scholar 

  • C. Weißenfels, Direct nodal imposition of surface loads using the divergence theorem. Finite Elem. Anal. Des. 165, 31–40 (2019)

    Article  MathSciNet  Google Scholar 

  • H. Wessels, Thermo-Mechanical Modeling for Selective Laser Melting. Ph.D. thesis, Leibniz Universität Hannover, Germany (2019)

    Google Scholar 

  • H. Wessels, T. Bode, C. Weißenfels, P. Wriggers, T.I. Zohdi, Investigation of heat source modeling for selective laser melting. Computational Mechanics, pp. 1–22 (2018a)

    Google Scholar 

  • H. Wessels, C. Weißenfels, P. Wriggers, Metal particle fusion analysis for additive manufacturing using the stabilized optimal transportation meshfree method. Comput. Methods Appl. Mech. Eng. 339, 91–114 (2018b)

    Google Scholar 

  • P.J. Withers, H.K.D.H. Bhadeshia, Residual stress. Part 2. Nature and origins. Mater. Sci. Technol. 17(4), 366–375 (2001)

    Google Scholar 

  • W.L. Wood, Practical Time-Stepping Schemes, vol. 6 (Clarendon Press, Oxford, 1990)

    MATH  Google Scholar 

  • I. Yadroitsev, Selective Laser Melting: Direct manufacturing of 3D-objects by Selective Laser Melting of Metal Powders (Lambert Academic Publishing, 2009)

    Google Scholar 

  • I. Yadroitsev, I. Smurov, Surface morphology in selective laser melting of metal powders. Phys. Procedia 12, 264–270 (2011)

    Article  Google Scholar 

  • I. Yadroitsev, A. Gusarov, I. Yadroitsava, I. Smurov, Single track formation in selective laser melting of metal powders. J. Mater. Process. Technol. 210(12), 1624–1631 (2010)

    Article  Google Scholar 

  • C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Review of selective laser melting: materials and applications. Appl. Phys. Rev. 2(4), 041101 (2015)

    Google Scholar 

  • T. Young, III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)

    Google Scholar 

  • T.I. Zohdi, Additive particle deposition and selective laser processing-a computational manufacturing framework. Comput. Mech. 54(1), 171–191 (2014)

    Article  MathSciNet  Google Scholar 

  • T.I. Zohdi, Dynamics of Charged Particulate Systems: Modeling, Theory and Computation (Springer Science & Business Media, 2012)

    Google Scholar 

  • T.I. Zohdi, Rapid simulation of laser processing of discrete particulate materials. Arch. Comput. Methods Eng. 20(4), 309–325 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Weißenfels .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weißenfels, C. (2022). Modeling Selective Laser Melting. In: Simulation of Additive Manufacturing using Meshfree Methods. Lecture Notes in Applied and Computational Mechanics, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-030-87337-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87337-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87336-3

  • Online ISBN: 978-3-030-87337-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics