Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 97))

  • 699 Accesses

Abstract

Compared to SPH, Peridynamics is a more recent meshfree method. It is understood as the application of Molecular Dynamics to the macroscopic description of continua. Analogous to Molecular Dynamics (see, e.g., Griebel et al. (2013)), Peridynamics distinguishes between bond-based and state-based formulations. In the former (Silling (2000)), the force results solely from the displacements between two particles. In the state-based approach (Silling et al. (2007)), the force at a particle is determined from the deformations of all particles in the neighborhood. State-based Peridynamics further divides into an ordinary and a non-ordinary approach. In the former, the line of action of the stress between two particles is assumed to run along with its distance. In non-ordinary Peridynamics, this restriction is removed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • F. Bobaru, J.T. Foster, P.H. Geubelle, S.A. Silling, Handbook of Peridynamic Modeling (CRC press, 2016)

    Google Scholar 

  • T. Bode, C. Weißenfels, P. Wriggers, Peridynamic Petrov-Galerkin method: a generalization of the peridynamic theory of correspondence materials. Comput. Methods Appl. Mech. Eng. 358, 112636 (2020a)

    Google Scholar 

  • T. Bode, C. Weißenfels, P. Wriggers, Mixed peridynamic formulations for compressible and incompressible finite deformations. Comput. Mech. 65(5), 1365–1376 (2020b)

    Google Scholar 

  • T. Bode, C. Weißenfels, P. Wriggers, A consistent peridynamic formulation for arbitrary particle distributions. Comput. Methods Appl. Mech. Eng. 374, 113605 (2021)

    Google Scholar 

  • M.S. Breitenfeld, P.H. Geubelle, O. Weckner, S.A. Silling, Non-ordinary state-based peridynamic analysis of stationary crack problems. Comput. Methods Appl. Mech. Eng. 272, 233–250 (2014)

    Article  MathSciNet  Google Scholar 

  • T. Breitzman, K. Dayal, Bond-level deformation gradients and energy averaging in Peridynamics. J. Mech. Phys. Solids 110, 192–204 (2018)

    Article  MathSciNet  Google Scholar 

  • S.R. Chowdhury, P. Roy, D. Roy, J.N. Reddy, A modified Peridynamics correspondence principle: removal of zero-energy deformation and other implications. Comput. Methods Appl. Mech. Eng. 346, 530–549 (2019)

    Article  MathSciNet  Google Scholar 

  • G.C. Ganzenmüller, S. Hiermaier, M. May, On the similarity of meshless discretizations of Peridynamics and smooth-particle hydrodynamics. Comput. Struct. 150, 71–78 (2015)

    Article  Google Scholar 

  • M. Griebel, S. Knapek, G. Zumbusch, A. Caglar, Numerische Simulation in Der Moleküldynamik: Numerik, Algorithmen, Parallelisierung (Springer, Anwendungen, 2013)

    Google Scholar 

  • P. Hartmann, C. Weißenfels, P. Wriggers, Application of enhanced peridynamic correspondence formulation for three-dimensional simulations at large strains, in Virtual Design and Validation (Springer, 2020), pp. 81–104

    Google Scholar 

  • B. Kilic, E. Madenci, An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory. Theor. Appl. Fract. Mech. 53(3), 194–204 (2010)

    Article  Google Scholar 

  • D.J. Littlewood, Simulation of dynamic fracture using Peridynamics, finite element modeling, and contact, in Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition (IMECE) (2010)

    Google Scholar 

  • D.J. Littlewood, Roadmap for Peridynamic Software Implementation (SAND Report, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2015)

    Google Scholar 

  • R.W. Macek, S.A. Silling, Peridynamics via finite element analysis. Finite Elem. Anal. Des. 43(15), 1169–1178 (2007)

    Article  MathSciNet  Google Scholar 

  • E. Madenci, M. Dorduncu, A. Barut, N. Phan, Weak form of Peridynamics for nonlocal essential and natural boundary conditions. Comput. Methods Appl. Mech. Eng. 337, 598–631 (2018)

    Article  MathSciNet  Google Scholar 

  • H. Ren, X. Zhuang, Y. Cai, T. Rabczuk, Dual-horizon Peridynamics. Int. J. Numer. Methods Eng. 108(12), 1451–1476 (2016)

    Article  MathSciNet  Google Scholar 

  • S. Silling, D. Littlewood, P. Seleson, Variable horizon in a peridynamic medium. J. Mech. Mater. Struct. 10(5), 591–612 (2015)

    Article  MathSciNet  Google Scholar 

  • S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  MathSciNet  Google Scholar 

  • S.A. Silling, Stability of peridynamic correspondence material models and their particle discretizations. Comput. Methods Appl. Mech. Eng. 322, 42–57 (2017)

    Article  MathSciNet  Google Scholar 

  • S.A. Silling, A. Askari, Practical Peridynamics. Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) (2014)

    Google Scholar 

  • S.A. Silling, R.B. Lehoucq, Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010)

    Article  Google Scholar 

  • S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)

    Article  MathSciNet  Google Scholar 

  • Q. Tu, S. Li, An updated Lagrangian particle hydrodynamics (ULPH) for Newtonian fluids. J. Comput. Phys. 348, 493–513 (2017)

    Article  MathSciNet  Google Scholar 

  • M.R. Tupek, R. Radovitzky, An extended constitutive correspondence formulation of Peridynamics based on nonlinear bond-strain measures. J. Mech. Phys. Solids 65, 82–92 (2014)

    Article  MathSciNet  Google Scholar 

  • C. Weißenfels, Direct nodal imposition of surface loads using the divergence theorem. Finite Elem. Anal. Des. 165, 31–40 (2019)

    Article  MathSciNet  Google Scholar 

  • C.T. Wu, Kinematic constraints in the state-based Peridynamics with mixed local/nonlocal gradient approximations. Comput. Mech. 54(5), 1255–1267 (2014)

    Article  MathSciNet  Google Scholar 

  • C.T. Wu, C.K. Park, J.S. Chen, A generalized approximation for the meshfree analysis of solids. Int. J. Numer. Methods Eng. 85(6), 693–722 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Weißenfels .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weißenfels, C. (2022). Peridynamics. In: Simulation of Additive Manufacturing using Meshfree Methods. Lecture Notes in Applied and Computational Mechanics, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-030-87337-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87337-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87336-3

  • Online ISBN: 978-3-030-87337-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics