Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 97))

  • 645 Accesses

Abstract

The Finite Element Method based on a Lagrangian description of the differential equation is mostly used to simulate the behavior of solids under loadings. With this scheme, a good approximation of the solution can be achieved, provided that the elements do not distort too much. However, this restriction limits the range of applications. To increase the flexibility of Galerkin methods, approaches are pursued which allow the determination of the test and trial function on an almost arbitrary distribution of nodes in the corresponding neighborhood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M. Arroyo, M. Ortiz, Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int. J. Numer. Meth. Eng. 65, 2167–2202 (2006)

    Article  MathSciNet  Google Scholar 

  • S. Beissel, T. Belytschko, Nodal integration of the element-free Galerkin method. Comput. Methods Appl. Mech. Eng. 139(1), 49–74 (1996)

    Article  MathSciNet  Google Scholar 

  • T. Belytschko, Y.Y. Lu, L. Gu, Element-free Galerkin methods. Int. J. Numer. Meth. Eng. 37, 229–256 (1994)

    Article  MathSciNet  Google Scholar 

  • T. Bode, C. Weißenfels, P. Wriggers, A consistent peridynamic formulation for arbitrary particle distributions. Comput. Methods Appl. Mech. Eng. 374, 113605 (2021)

    Google Scholar 

  • J. Bonet, S.D. Kulasegaram, Correction and stabilization of Smooth Particle Hydrodynamics methods with applications in metal forming simulations. Int. J. Numer. Meth. Eng. 47(6), 1189–1214 (2000)

    Article  Google Scholar 

  • J.S. Chen, C.T. Wu, S. Yoon, Y. You, A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Meth. Eng. 50(2), 435–466 (2001)

    Article  Google Scholar 

  • J.S. Chen, S. Yoon, C.T. Wu, Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Meth. Eng. 53(12), 2587–2615 (2002)

    Article  Google Scholar 

  • J.S. Chen, W. Hu, M.A. Puso, Y. Wu, X. Zhang, Strain smoothing for stabilization and regularization of Galerkin meshfree methods, in Meshfree Methods for Partial Differential Equations III, pp. 57–75 (Springer, Berlin, 2007)

    Google Scholar 

  • J.S. Chen, M. Hillman, M. Rüter, An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int. J. Numer. Meth. Eng. 95(5), 387–418 (2013)

    Article  MathSciNet  Google Scholar 

  • S. De, K.J. Bathe, The method of finite spheres with improved numerical integration. Comput. Struct. 79(22), 2183–2196 (2001)

    Article  MathSciNet  Google Scholar 

  • G. Dhatt, G. Touzot, The Finite Elemet Method Displayed (Wiley, Chicester, 1984)

    MATH  Google Scholar 

  • J. Dolbow, T. Belytschko, Numerical integration of the Galerkin weak form in meshfree methods. Comput. Mech. 23(3), 219–230 (1999)

    Article  MathSciNet  Google Scholar 

  • M. Hillman, J.S. Chen, An accelerated, convergent, and stable nodal integration in galerkin meshfree methods for linear and nonlinear mechanics. Int. J. Numer. Meth. Eng. 107(7), 603–630 (2016)

    Article  MathSciNet  Google Scholar 

  • J. Korelc, Automatic generation of finite-element code by simultaneous optimization of expressions. Theoret. Comput. Sci. 187, 231–248 (1997)

    Article  Google Scholar 

  • J. Korelc, P. Wriggers, Automation of Finite Element Methods (Springer, Berlin, 2016)

    Google Scholar 

  • S. Kumar, K. Danas, D.M. Kochmann, Enhanced local maximum-entropy approximation for stable meshfree simulations. Comput. Methods Appl. Mech. Eng. 344, 858–886 (2019)

    Article  MathSciNet  Google Scholar 

  • B. Li, F. Habbal, M. Ortiz, Optimal transportation meshfree approximation schemes for fluid and plastic flows. Int. J. Numer. Meth. Eng. 83, 1541–1579 (2010)

    Article  MathSciNet  Google Scholar 

  • S. Li, W.K. Liu, Meshfree Particle Methods (Springer, Berlin, 2007)

    MATH  Google Scholar 

  • W.K. Liu, S. Jun, Y.F. Zhang, Reproducing kernel particle methods. Int. J. Numer. Meth. Fluids 20(8–9), 1081–1106 (1995)

    Article  MathSciNet  Google Scholar 

  • W.K. Liu, S. Li, T. Belytschko, Moving least-square reproducing kernel methods (I): methodology and convergence. Comput. Methods Appl. Mech. Eng. 143(1), 113–154 (1997)

    Article  MathSciNet  Google Scholar 

  • J. Mosler, M. Ortiz, On the numerical implementation of variational arbitrary Lagrangian-Eulerian (VALE) formulations. Int. J. Numer. Meth. Eng. 67(9), 1272–1289 (2006)

    Article  MathSciNet  Google Scholar 

  • B. Nayroles, G. Touzot, P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10(5), 307–318 (1992)

    Article  MathSciNet  Google Scholar 

  • M.A. Puso, J.S. Chen, E. Zywicz, W. Elmer, Meshfree and finite element nodal integration methods. Int. J. Numer. Meth. Eng. 74(3), 416–446 (2008)

    Article  MathSciNet  Google Scholar 

  • A. Rosolen, D. Millán, M. Arroyo, On the optimum support size in meshfree methods: a variational adaptivity approach with maximum-entropy approximants. Int. J. Numer. Meth. Eng. 82(7), 868–895 (2010)

    Article  Google Scholar 

  • K. Schweizerhof, E. Ramm, Displacement dependent pressure loads in nonlinear finite element analysis. Comput. & Struct. 6, 1099–1114 (1984)

    Article  Google Scholar 

  • P. Thoutireddy, M. Ortiz, A variational r-adaption and shape-optimization method for finite-deformation elasticity. Int. J. Numer. Meth. Eng. 61(1), 1–21 (2004)

    Article  MathSciNet  Google Scholar 

  • C. Villani, Topics in Optimal Transportation Theory, Graduate Studies in Mathematics, vol. 58, 2nd edn. (American Mathematical Society, Providence, 2013)

    MATH  Google Scholar 

  • C. Weißenfels, Direct nodal imposition of surface loads using the divergence theorem. Finite Elem. Anal. Des. 165, 31–40 (2019)

    Article  MathSciNet  Google Scholar 

  • C. Weißenfels, P. Wriggers, Stabilization algorithm for the optimal transportation meshfree approximation scheme. Comput. Methods Appl. Mech. Eng. 329, 421–443 (2018)

    Article  MathSciNet  Google Scholar 

  • P. Wriggers, Nonlinear Finite Element Methods (Springer Science & Business Media, Berlin, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Weißenfels .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weißenfels, C. (2022). Meshfree Galerkin Methods. In: Simulation of Additive Manufacturing using Meshfree Methods. Lecture Notes in Applied and Computational Mechanics, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-030-87337-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87337-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87336-3

  • Online ISBN: 978-3-030-87337-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics