Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 97))

  • 617 Accesses

Abstract

Additive Manufacturing involves the interaction of different physical processes. In some printing technologies, an additional chemical reaction takes place. A thermomechanical process with phase change is present if the 3D-print is based on melting. In the case of photopolymerization, an external heat source accelerates the hardening of a liquid due to a chemical reaction. Hence, mechanical, thermal, and chemical fields need to be coupled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M. André, P. Wriggers, Thermo-mechanical behaviour of rubber materials during vulcanization. Int. J. Solids Struct. 42(16–17), 4758–4778 (2005)

    Article  Google Scholar 

  • H.D. Baehr, S. Kabelac, Thermodynamik, 16th edn. (Springer, 2016)

    Google Scholar 

  • C. Bonacina, G. Comini, A. Fasano, M. Primicerio, Numerical solution of phase-change problems. Int. J. Heat Mass Trans. 16(10), 1825–1832 (1973)

    Article  Google Scholar 

  • A.N. Brooks, T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)

    Article  MathSciNet  Google Scholar 

  • H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford Science Publications, 1959)

    Google Scholar 

  • M. Chiumenti, M. Cervera, A. Salmi, C.A. De Saracibar, N. Dialami, K. Matsui, Finite element modeling of multi-pass welding and shaped metal deposition processes. Comput. Methods Appl. Mech. Eng. 199(37–40), 2343–2359 (2010)

    Article  Google Scholar 

  • B.D. Coleman, M.E. Gurtin, Thermodynamics with internal state variables. J. Chem. Phys. 47(2), 597–613 (1967)

    Article  Google Scholar 

  • C.A. de Saracibar, M. Cervera, M. Chiumenti, On the constitutive modeling of coupled thermomechanical phase-change problems. Int. J. Plast. 17(12), 1565–1622 (2001)

    Article  Google Scholar 

  • A.C. Eringen, C.B. Kafadar, Polar field theories, in Continuum Physics, ed. by A.C. Eringen. Polar and Nonlocal Field Theories, vol. IV (Academic Press, New York, 1976), pp. 1–74

    Google Scholar 

  • N.R. Eyres, D.R. Hartree, J. Ingham, R.J. Sarjant, J.B. Wagstaff, The calculation of variable heat flow in solids. Phil. Trans. R. Soc. Lond. A 240(813), 1–57 (1946)

    Article  MathSciNet  Google Scholar 

  • M.E. Glicksman, Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts (Springer, New York, 2011)

    Google Scholar 

  • P. Haupt, Continuum Mechanics and Theory of Materials, 2nd edn. (Springer, Berlin, Heidelberg, Wien, 2002)

    Book  Google Scholar 

  • G.A. Holzapfel, Nonlinear Solid Mechanics A Continuum Approach for Engineering (Wiley, Chichester, 2000)

    Google Scholar 

  • T.R.J. Hughes, The Finite Element Method (Prentice Hall, Englewood Cliffs, NJ, 1987)

    Google Scholar 

  • H. Ji, D. Chopp, J.E. Dolbow, A hybrid extended finite element/level set method for modeling phase transformations. Int. J. Num. Methods Eng. 54(8), 1209–1233 (2002)

    Article  MathSciNet  Google Scholar 

  • A. Krawietz, Materialtheorie (Springer, Berlin, Heidelberg, 1986)

    Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Fluid mechanics: Volume 6 of Course of Theoretical Physics, 2rd edn. (Pergamon Press, 1987)

    Google Scholar 

  • R. Landgraf, M. Rudolph, R. Scherzer, J. Ihlemann, Modelling and simulation of adhesive curing processes in bonded piezo metal composites. Comput. Mech. 54(2), 547–565 (2014)

    Article  Google Scholar 

  • A. Lion, P. Höfer, On the phenomenological representation of curing phenomena in continuum mechanics. Arch. Mech. 59(1), 59–89 (2007)

    MATH  Google Scholar 

  • D. Lüdecke, C. Lüdecke. Thermodynamik: Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik (Springer, 2013)

    Google Scholar 

  • L.E. Malvern, Introducation to the Mechanics of a Continuous Medium (Prentice-Hall Inc, Englewood Cliffs, NJ, 1969)

    Google Scholar 

  • J. Marsden, T.J.R. Hughes, Mathematical Foundations of Elasticity (Prentice-Hall Inc, Englewood Cliffs, 1983)

    Google Scholar 

  • C. Miehe, Zur numerischen Behandlung thermomechanischer Prozesse. Ph.D. thesis, Universität Hannover, Germany (1988)

    Google Scholar 

  • W.D. Rolph, K.J. Bathe, An efficient algorithm for analysis of nonlinear heat transfer with phase changes. Int. J. Num. Methods Eng. 18(1), 119–134 (1982)

    Article  Google Scholar 

  • L.D. Schmidt, The Engineering of Chemical Reactions, vol. 2 (Oxford University Press, USA, 1998)

    Google Scholar 

  • H.R. Schwarz, Methode Der Finiten Elemente: Eine Einführung Unter Berücksichtigung Der Rechenpraxis (Teubner, Stuttgart, 1991)

    Google Scholar 

  • M. Silhavy, The Mechanics and Thermodynamics of Continuous Media (Springer, Berlin, Heidelberg, Wien, 1997)

    Google Scholar 

  • S. Sourour, M.R. Kamal, Differential scanning calorimetry of epoxy cure: isothermal cure kinetics. Thermochimica Acta 14(1–2), 41–59 (1976)

    Article  Google Scholar 

  • C. Truesdell, W. Noll, The Non-Linear Field Theories of Mechanics, 3rd edn. (Springer, Berlin, Heidelberg, New York, 2004)

    Google Scholar 

  • C. Truesdell, R. Toupin. The classical field theories, in Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie (Springer, 1960), pp. 226–858

    Google Scholar 

  • V.R. Voller, C. Prakash, A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int. J. Heat Mass Trans. 30(8), 1709–1719 (1987)

    Article  Google Scholar 

  • S.L. Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murray, S.R. Coriell, R.J. Braun, G.B. McFadden, Thermodynamically-consistent phase-field models for solidification. Physica D: Nonlinear Phenomena 69(1–2), 189–200 (1993)

    Article  MathSciNet  Google Scholar 

  • P. Wriggers, Nonlinear Finite Element Methods (Springer Science & Business Media, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Weißenfels .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weißenfels, C. (2022). Differential Equations. In: Simulation of Additive Manufacturing using Meshfree Methods. Lecture Notes in Applied and Computational Mechanics, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-030-87337-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87337-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87336-3

  • Online ISBN: 978-3-030-87337-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics