Skip to main content

Fuzzy-Rough Nearest Neighbour Approaches for Emotion Detection in Tweets

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2021)

Abstract

Social media are an essential source of meaningful data that can be used in different tasks such as sentiment analysis and emotion recognition. Mostly, these tasks are solved with deep learning methods. Due to the fuzzy nature of textual data, we consider using classification methods based on fuzzy rough sets.

Specifically, we develop an approach for the SemEval-2018 emotion detection task, based on the fuzzy rough nearest neighbour (FRNN) classifier enhanced with ordered weighted average (OWA) operators. We use tuned ensembles of FRNN–OWA models based on different text embedding methods. Our results are competitive with the best SemEval solutions based on more complicated deep learning methods.

This work was supported by the Odysseus programme of the Research Foundation–Flanders (FWO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://competitions.codalab.org/competitions/17751.

  2. 2.

    The source code: https://github.com/olha-kaminska/frnn_emotion_detection.

  3. 3.

    Competition results: https://competitions.codalab.org/competitions/17751#results.

  4. 4.

    https://en.wikipedia.org/wiki/List_of_emoticons.

  5. 5.

    https://pypi.org/project/emoji/.

  6. 6.

    https://gist.github.com/sebleier/554280.

  7. 7.

    https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM.

  8. 8.

    https://deepmoji.mit.edu/.

  9. 9.

    https://github.com/huggingface/torchMoji.

  10. 10.

    https://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder.

  11. 11.

    https://github.com/dnanhkhoa/pytorch-pretrained-BERT/blob/master/examples/extract_features.py.

  12. 12.

    p refers to the number of elements in the OWA weight vector.

  13. 13.

    https://github.com/oulenz/fuzzy-rough-learn.

  14. 14.

    https://competitions.codalab.org/competitions/17751#learn_the_details-evaluation.

References

  1. Barbieri, F., Camacho-Collados, J., Espinosa Anke, L., Neves, L.: TweetEval: Unified benchmark and comparative evaluation for tweet classification. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 1644–1650. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.findings-emnlp.148. https://www.aclweb.org/anthology/2020.findings-emnlp.148

  2. Cer, D., et al.: Universal sentence encoder for English. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 169–174. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/D18-2029. https://www.aclweb.org/anthology/D18-2029

  3. Cornelis, C., Verbiest, N., Jensen, R.: Ordered weighted average based fuzzy rough sets. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS (LNAI), vol. 6401, pp. 78–85. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16248-0_16

    Chapter  Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186 (2019)

    Google Scholar 

  5. Duppada, V., Jain, R., Hiray, S.: SeerNet at SemEval-2018 task 1: domain adaptation for affect in tweets. In: Proceedings of The 12th International Workshop on Semantic Evaluation, pp. 18–23. Association for Computational Linguistics, New Orleans (2018). https://doi.org/10.18653/v1/S18-1002. https://www.aclweb.org/anthology/S18-1002

  6. Gee, G., Wang, E.: psyML at semeval-2018 task 1: transfer learning for sentiment and emotion analysis. In: Proceedings of The 12th International Workshop on Semantic Evaluation, pp. 369–376 (2018)

    Google Scholar 

  7. Huang, A.: Similarity measures for text document clustering. In: Proceedings of the Sixth New Zealand Computer Science Research Student Conference (NZCSRSC2008), Christchurch, New Zealand, vol. 4, pp. 9–56 (2008)

    Google Scholar 

  8. Jensen, R., Cornelis, C.: A new approach to fuzzy-rough nearest neighbour classification. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 310–319. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88425-5_32

    Chapter  Google Scholar 

  9. Jensen, R., Cornelis, C.: Fuzzy-rough nearest neighbour classification. In: Peters, J.F., Skowron, A., Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) Transactions on Rough Sets XIII. LNCS, vol. 6499, pp. 56–72. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18302-7_4

    Chapter  Google Scholar 

  10. Jensen, R., Cornelis, C.: Fuzzy-rough nearest neighbour classification and prediction. Theoret. Comput. Sci. 412(42), 5871–5884 (2011)

    Article  MathSciNet  Google Scholar 

  11. Kaminska, O., Cornelis, C., Hoste, V.: Nearest neighbour approaches for emotion detection in tweets. In: Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 203–212. Association for Computational Linguistics, Online (2021). https://www.aclweb.org/anthology/2021.wassa-1.22

  12. Lenz, O.U., Peralta, D., Cornelis, C.: Scalable approximate FRNN-OWA classification. IEEE Trans. Fuzzy Syst. 28(5), 929–938 (2019)

    Article  Google Scholar 

  13. MacAvaney, S., Yao, H.R., Yang, E., Russell, K., Goharian, N., Frieder, O.: Hate speech detection: challenges and solutions. PLoS ONE 14(8), e0221152 (2019)

    Article  Google Scholar 

  14. Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., Gao, J.: Deep learning based text classification: a comprehensive review. arXiv e-prints, pp. arXiv-2004 (2020)

    Google Scholar 

  15. Mohammad, S.M., Bravo-Marquez, F., Salameh, M., Kiritchenko, S.: Semeval-2018 Task 1: Affect in tweets. In: Proceedings of International Workshop on Semantic Evaluation (SemEval-2018), New Orleans, LA, USA (2018)

    Google Scholar 

  16. Mohammad, S.M., Kiritchenko, S.: Using hashtags to capture fine emotion categories from tweets. Comput. Intell. 31(2), 301–326 (2015)

    Article  MathSciNet  Google Scholar 

  17. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992. Association for Computational Linguistics, Hong Kong (2019). https://doi.org/10.18653/v1/D19-1410. https://www.aclweb.org/anthology/D19-1410

  18. Rozental, A., Fleischer, D.: Amobee at SemEval-2018 task 1: GRU neural network with a CNN attention mechanism for sentiment classification. In: Proceedings of The 12th International Workshop on Semantic Evaluation. pp. 218–225. Association for Computational Linguistics, New Orleans (2018). https://doi.org/10.18653/v1/S18-1033. https://www.aclweb.org/anthology/S18-1033

  19. Sailunaz, K., Dhaliwal, M., Rokne, J., Alhajj, R.: Emotion detection from text and speech: a survey. Soc. Netw. Anal. Min. 8(1), 1–26 (2018). https://doi.org/10.1007/s13278-018-0505-2

    Article  Google Scholar 

  20. Vluymans, S.: Dealing with Imbalanced and Weakly Labelled Data in Machine Learning Using Fuzzy and Rough Set Methods. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-04663-7

    Book  Google Scholar 

  21. Wang, C., Feng, S., Wang, D., Zhang, Y.: Fuzzy-rough set based multi-labeled emotion intensity analysis for sentence, paragraph and document. In: Li, J., Ji, H., Zhao, D., Feng, Y. (eds.) NLPCC -2015. LNCS (LNAI), vol. 9362, pp. 444–452. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25207-0_41

    Chapter  Google Scholar 

  22. Wang, C., Wang, D., Feng, S., Zhang, Y.: An approach of fuzzy relation equation and fuzzy-rough set for multi-label emotion intensity analysis. In: Gao, H., Kim, J., Sakurai, Y. (eds.) DASFAA 2016. LNCS, vol. 9645, pp. 65–80. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32055-7_6

    Chapter  Google Scholar 

  23. Wolny, W.: Emotion analysis of twitter data that use emoticons and emoji ideograms (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olha Kaminska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaminska, O., Cornelis, C., Hoste, V. (2021). Fuzzy-Rough Nearest Neighbour Approaches for Emotion Detection in Tweets. In: Ramanna, S., Cornelis, C., Ciucci, D. (eds) Rough Sets. IJCRS 2021. Lecture Notes in Computer Science(), vol 12872. Springer, Cham. https://doi.org/10.1007/978-3-030-87334-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87334-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87333-2

  • Online ISBN: 978-3-030-87334-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics