Skip to main content

Tailoring Disease Resilience Crops through CRISPR/Cas

  • Chapter
  • First Online:
Microbial Biocontrol: Food Security and Post Harvest Management

Abstract

Recent developments in clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (CRISPR/Cas) enable scientists to add critical agronomic traits in crop plants such as plant disease management and tolerance to abiotic stresses. CRISPR-based editing technology not only improved the genetic studies but also shortened out various breeding technologies in an environmentally friendly manner. CRISPR/Cas has overhauled additional genome editing technologies (GETs), for instance, transcription activator-like effector nucleases (TALENs), zinc finger nucleases (ZFNs) and mega-nucleases, because of its simplicity, higher success, robustness and being economical. However, although CRISPR/Cas has emerged as a potent tool in crop genome editing, it is still challenging for scientists to overcome some challenges associated with it, such as off-site targeting and various regulations. Moreover, according to an estimate of the International Society for Plant Pathology, globally, every year there is a reduction of ~10–40% in yield of major cereal crops (Triticum, Oryza, Zea mays, Glycine max), vegetables crops (potato, tomato, egg fruit, beans) and fruit crops (apple, cassava, citrus, grape, avocado) due to various pathogens. Therefore, after years of decryption of CRISPR/Cas technology, researchers are now editing the genomes of crops to solve future food security by generating pathogen-resistant plants. This chapter mainly summarizes an updated utilization of CRISPR/Cas and/or CRISPR-associated proteins in cultivated and model crop disease management in response to various pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Razzak A, Guiraud T, Peypelut M, Walter J, Houvenaghel MC, Candresse T, Gall OL, German-Retana S (2009) Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E-mediated resistance against Lettuce mosaic potyvirus. Mol Plant Pathol 10:109–113

    CAS  PubMed  Google Scholar 

  • Ahmar S, Gill RA, Jung KH, Faheem A, Qasim MU, Mubeen M, Zhou W (2020) Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Mol Sci 21(7):2590

    CAS  PubMed Central  Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238

    PubMed  PubMed Central  Google Scholar 

  • Ali Z, Ali S, Tashkandi M, Shan S, Zaidi A, Mahfouz MM (2016) CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep 6:26912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali Z, Shami A, Sedeek K, Kamel R, Alhabsi A, Tehseen M, Hassan N, Butt H, Kababji A, Hamdan SM, Mahfouz MM (2020) Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice. Commun Biol 3:44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan MZ, Ding S, Mahfouz M (2018) RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19:1

    PubMed  PubMed Central  Google Scholar 

  • Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR– Cas prokaryotic immune system. Nat Plants 1:15145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933–941

    CAS  PubMed  Google Scholar 

  • Bastet A, Zafirov D, Giovinazzo N, Guyon-Debast A, Nogué F, Robaglia C, Gallois JL (2019) Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses. Plant Biotechnol J 17:1736–1750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41(15):7429–7437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, Vander Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaloner TM, Gurr SJ, Bebber DP (2020) The global burden of plant disease track crop yields under climate change. bioRxiv. https://doi.org/10.1101/2020.04.28.066233

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 55(7):1479–1491

    Google Scholar 

  • Chen H, Choi J, Bailey S (2014) Cut site selection by the two-nuclease domains of the Cas9 RNA-guided endonuclease. J Biolog Chem 289(19):13284–13294

    CAS  Google Scholar 

  • Cheng X, Li F, Cai J, Chen W, Zhao N, Sun Y, Guo Y, Yang X, Wu X (2015) Artificial TALE as a convenient protein platform for engineering broad-spectrum resistance begomoviruses. Virus 7:4772–4782

    CAS  Google Scholar 

  • Cole MB, Augustin MA, Robertson MJ, Manners JM (2018) The science of food security. NPJ Sci Food 2:14

    PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dahan-Meir T, Filler-Hayut S, Melamed-Bessudo C, Bocobza S, Czosnek H, Aharoni A, Levy AA (2018) Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. Plant J 95(1):5–16

    CAS  PubMed  Google Scholar 

  • de Toledo Thomazella DP, Brail Q, Dahlbeck D, Staskawicz BJ (2016) CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. BioRXIV:064824

    Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    PubMed  PubMed Central  Google Scholar 

  • Dever TE, Kinzy TG, Pavitt GD (2016) Mechanism and regulation of protein synthesis in Saccharomyces cerevisiae. Genetics 203(1):65–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doehlemann G, Okmen B, Zhu W, Sharon A (2017) Plant pathogenic fungi. In: Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (eds) The fungal kingdom. ASM press, Washington, DC, pp 703–726

    Google Scholar 

  • Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR/Cas9. Science 346(6213):1258096

    PubMed  Google Scholar 

  • Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang C, Chen X (2018) Potential biocontrol efficacy of Trichoderma atroviride with cellulase expression regulator ace1 gene knockout. Biotechnol 8:302

    Google Scholar 

  • Fang Y, Tyler BM (2016) Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol Plant Pathol 17(1):127–139

    CAS  PubMed  Google Scholar 

  • Fister AS, Landherr L, Maximova SN, Guiltinan MJ (2018) Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front Plant Sci 9:268

    PubMed  PubMed Central  Google Scholar 

  • Floros JD, Newsome R, Fisher W, Barbosa-Cánovas GV, Chen H, Dunne CP, German JB, Hall RL, Heldman DR, Karwe MV, Knabel SJ (2010) Feeding the world today and tomorrow: the importance of food science and technology: an IFT scientific review. Compr Rev Food Sci Food Saf 9(5):572–599

    PubMed  Google Scholar 

  • Gao W, Long L, Tian X, Xu F, Liu J, Singh PK, Botella JR, Song C (2017) Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci 8:1364. https://doi.org/10.3389/fpls.2017.01364

    Article  PubMed  PubMed Central  Google Scholar 

  • Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    CAS  PubMed  Google Scholar 

  • Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:E2579–E2586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georges F, Ray H (2017) Genome editing of crops: a renewed opportunity for food security. GM Crops Food 8(1):1–12

    PubMed  PubMed Central  Google Scholar 

  • Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Kariman K (2018) Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol Control 117:147–157

    Google Scholar 

  • Gilbertson RL, Batuman O, Webster CG, Adkins S (2015) Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu Rev Virol 2:67–93

    CAS  PubMed  Google Scholar 

  • Giraud T, Gladieux P, Gavrilets S (2010) Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecol Evol 25:387–395

    PubMed  PubMed Central  Google Scholar 

  • Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, Renninger K, Beyene G, Taylor NJ, Carrington JC, Staskawicz BJ, Bart RS (2019) Simultaneous CRISPR/Cas9- mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnol J 17(2):421–434

    CAS  PubMed  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Zhang J, Jia H, Sosso D, Li T, Frommer WB, Yang B, White FF, Wang N, Jones JB (2014) Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. PNAS 111:E521–E529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Guo Y, Liu Y, Zhang F, Wang Z, Wang H, Wang F, Li D, Mao D, Luan S, Liang M, Chen L (2018) 9-cis-Epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice. Front Plant Sci 9:162

    PubMed  PubMed Central  Google Scholar 

  • Idnurm A, Urquhart AS, Vummadi DR, Chang S, Van DeWouw AP, López-Ruiz FJ (2017) Spontaneous and CRISPR/Cas9-induced mutation of the osmosensor histidine kinase of the canola pathogen Leptosphaeria maculans. Fungal Boil Biotechnol 4:12

    Google Scholar 

  • Iqbal Z, Sattar MN, Shafiq M (2016) CRISPR/Cas9: a tool to circumscribe cotton leaf curl disease. Front Plant Sci 7:475

    PubMed  PubMed Central  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli and identification of the gene product. J Bacteriol 169:5429–5433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Islam T (2019) CRISPR-Cas technology in modifying food crops. CAB Rev 14:050

    Google Scholar 

  • Ji X, Si X, Zhang Y et al (2018) Conferring DNA virus resistance with high specificity in plants using virus-inducible genome-editing system. Genome Biol 19:197. https://doi.org/10.1186/s13059-018-1580-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR– Cas-like immune system conferring DNA virus resistance in plants. Nat Plants 1:15144

    CAS  PubMed  Google Scholar 

  • Jia H, Orbovic V, Jones JB, Wang N (2016) Modification of the PthA4 effector binding elements in type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccOpthA4:dCsLOB1.3 infection. Plant Biotechnol J 14:1291–1301

    CAS  PubMed  Google Scholar 

  • Jia H, Zhang Y, Orbovi'c V, Xu J, White FF, Jones JB, Wang N (2017) Genome editing of the disease susceptibility gene CsLOB1 in Citrus confers resistance to citrus canker. Plant Biotechnol J 15:817–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Yu X, Qi X, Yu Q, Deng S, Bai B, Li N, Zhang A, Zhu C, Liu B, Pang J (2013) Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgenic Res 22:1133–1142

    CAS  PubMed  Google Scholar 

  • Jorgensen IH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152

    Google Scholar 

  • Kamoun S, Talbot NJ, Islam MT (2019) Plant health emergencies demand open science: tackling a cereal killer on the run. PLoS Biol 17(6):e3000302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr A (2016) Biological control of crown Gall. Australas. Plant Pathol 45:15–18

    Google Scholar 

  • Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 18(1):31–41

    CAS  PubMed  Google Scholar 

  • Kis A, Hamar É, Tholt G, Bán R, Havelda Z (2019) Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnol J 17(6):1004–1006

    PubMed  PubMed Central  Google Scholar 

  • Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Makarova KS, Zhang F (2017) Diversity classification and evolution of CRISPR/Cas systems. Curr Opin Microbiol 37:67–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuang Y, Li S, Ren B, Yan F, Spetz C, Li X, Zhou X, Zhou H (2020) Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms. Mol Plant 13:565–572

    CAS  PubMed  Google Scholar 

  • Lellis AD, Kasschau KD, Whitham SA, Carrington JC (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso) 4E during potyvirus infection. Curr Biol 12:1046–1051

    CAS  PubMed  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    CAS  PubMed  Google Scholar 

  • Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36:1160–1163

    CAS  Google Scholar 

  • Liang Y, Han Y, Wang C, Jiang C, Xu JR (2018) Targeted deletion of the USTA and UvSLT2 genes effiE_ciently in Ustilaginoidea virens with the CRISPR-Cas9 system. Front Plant Sci 9:1–11

    Google Scholar 

  • Liu D, Chen X, Liu J, Ye J, Guo Z (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot 63:3899–3911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyngkjaer MF, Newton AC, Atzema JL, Baker SJ (2000) The Barley mlo-gene: an important powdery mildew resistance source. Agronomie 20:745–756

    Google Scholar 

  • Ma X, Mau M, Sharbel TF (2018) Genome editing for global food security. Trends Biotechnol 36:2

    Google Scholar 

  • Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1(7):1–26

    Google Scholar 

  • Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S, Kim J-S, Velasco R, Nagamangala Kanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904. https://doi.org/10.3389/fpls.2016.01904

    Article  PubMed  PubMed Central  Google Scholar 

  • Maresca M, Lin VG, Guo N, Yang Y (2013) Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res 23:539–546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miao J, Chi Y, Lin D, Tyler BM, Liu XL (2018) Mutations in ORP1 conferring oxathiapiprolin resistance confirmed by genome editing using CRISPR/Cas9 in Phytophthora capsici and P. sojae. Phytopathology 108:1412–1419

    CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant stress responses. Biochim Biophys Acta 1819:86–96

    CAS  PubMed  Google Scholar 

  • Mojica FJ, Rodriguez-Valera F (2016) The discovery of CRISPR in archaea and bacteria. FEBS J 283:3162–3169

    CAS  PubMed  Google Scholar 

  • Mushtaq M, Bhat JA, Mir ZA, Sakina A, Ali S, Singh AK, Tyagi A, Salgotra RK, Dar AA, Bhat R (2018) CRISPR/Cas approach: a new way of looking at plant–abiotic interactions. J Plant Physiol 224(225):156–162

    PubMed  Google Scholar 

  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7:482

    PubMed  PubMed Central  Google Scholar 

  • Ortigosa A, Gimenez-Ibanez S, Leonhardt N, Solano R (2019) Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol J 17:665–673

    CAS  PubMed  Google Scholar 

  • Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou K (2017) Engineering canker- resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15:1509–1519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pennisi E (2013) The CRISPR craze. Science 341:833–836

    CAS  PubMed  Google Scholar 

  • Pickar-Oliver A, Gersbach CA (2019) The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol 20(8):490–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pohare MB, Sharma M, Wagh SG (2019) CRISPR/Cas9 genome editing and its medical potential. In: Kumar S (ed) Adv Biotechnol Biosci, vol 3. NavNik Publications Pusa, India, pp 69–90

    Google Scholar 

  • Pohare MB, Wagh SG, Udayasuriyan V (2020) Bacillus thuringiensis as potential biocontrol agent for sustainable agriculture. In: Yadav AN (ed) Curr Trends Microb Biotechnol Sustain Agric. Springer Nature, Switzerland. (In press)

    Google Scholar 

  • Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS (2015) Cas9-mediated targeting of viral RNA in eukaryotic cells. PNAS 112:6164–6169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pyott DE, Sheehan E, Molnar A (2016) Engineering of CRISPR/Cas9- mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 4:1–13

    Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence specific control of gene expression. Cell 152(5):1173–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roossinck MJ, Martin DP, Roumagnac P (2015) Plant virus metagenomics: advances in virus discovery. Phytopathology 105:716–727

    CAS  PubMed  Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4:519–537

    Google Scholar 

  • Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691

    PubMed  PubMed Central  Google Scholar 

  • Schuster M, Schweizer G, Reissmann S, Kahmann R (2016) Genome editing in Ustilago maydis using the CRISPR-Cas system. Fungal Genet Boil 89:3–9

    CAS  Google Scholar 

  • Sera T (2005) Inhibition of virus DNA replication by artificial zinc finger proteins. J Virol 79:2614–2619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    CAS  PubMed  Google Scholar 

  • Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9:628–631

    CAS  PubMed  Google Scholar 

  • Sundin GW, Castiblanco LF, Yuan X, Zeng Q, Yang CH (2016) Bacterial disease management: challenges, experience, innovation and future prospects: challenges in bacterial molecular plant pathology. Mol Plant Pathol 17(9):1506–1518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018

    CAS  PubMed  Google Scholar 

  • Thomazella DPDT, Brail Q, Dahlbeck D, Staskawicz BJ (2016) CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. BbioRxiv

    Google Scholar 

  • Tripathi JN, Ntui VO, Ron M, Muiruri SK, Britt A, Tripathi L (2019) CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Boil 2:46

    Google Scholar 

  • Veillet F, Kermarrec M-P, Chauvin L, Chauvin J-E, Nogué F (2020) CRISPR-induced indels and base editing using the Staphylococcus aureus Cas9 in potato. PLoS One 15(8):e0235942. https://doi.org/10.1371/journal.pone.0235942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagh SG (2020) Comparative updates on host induced gene silencing and CRISPR/Cas9 utilization for improved disease resistance in crops, research. J Biotechnol

    Google Scholar 

  • Wagh SG, Alam MM, Kobayashi K, Yaeno T, Yamaoka N, Toriba T, Hirano HY, Nishiguchi M (2016a) Analysis of rice RNA-dependent RNA polymerase 6 (OsRDR6) gene in response to viral, bacterial and fungal pathogens. J Gen Plant Pathol 82:12–17

    CAS  Google Scholar 

  • Wagh SG, Kobayashi K, Yaeno T, Yamaoka N, Masuta C, Nishiguchi M (2016b) Rice necrosis mosaic virus, a fungal transmitted Bymovirus: complete nucleotide sequence of the genomic RNAs and subgrouping of bymoviruses. J Gen Plant Pathol 82:38–43

    Google Scholar 

  • Wagh SG, Pohare MB (2019) Current and future prospects of plant breeding with CRISPR/Cas. Curr J Appl Sci Technol 38(3):1–17

    Google Scholar 

  • Wagh SG, Pohare MB, Kale RR (2021) Chapter 9—CRISPR/Cas in food security and plant disease management. In: Kumar A, Droby S (eds) Food security and plant disease management. Elsevier, pp 171–191. https://doi.org/10.1016/B978-0-12-821843-3.00020-9

    Chapter  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11:e0154027

    PubMed  PubMed Central  Google Scholar 

  • Wang Q, Coleman JJ (2019) CRISPR/Cas9-mediated endogenous gene tagging in fusarium oxysporum. Fungal Genet Boil 126:17–24

    CAS  Google Scholar 

  • Wang W, Pan Q, He F, Akhunova A, Chao S, Trick H, Akhunov E (2018) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1:65–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–952

    CAS  PubMed  Google Scholar 

  • Wenderoth M, Pinecker C, Vobß B, Fischer R (2017) Establishment of CRISPR/Cas9 in Alternaria alternata. Fungal Genet Biol 101:55–60

    CAS  PubMed  Google Scholar 

  • Wenjing W, Chen Q, Singh PK, Huang Y, Pei D (2020) CRISPR/Cas9 edited HSFA6a and HSFA6b of Arabidopsis thaliana offers ABA and osmotic stress insensitivity by modulation of ROS homeostasis. Plant Signal Behav 15(12):1816321. https://doi.org/10.1080/15592324.2020.1816321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983

    CAS  PubMed  Google Scholar 

  • Yan F, Wang W, Zhang J (2019) CRISPR-Cas12 and Cas13: the lesser-known siblings of CRISPR-Cas9. Cell Biol Toxicol 35:489–492

    PubMed  Google Scholar 

  • Zafar SA, Zaidi SS, Gaba Y, Singla-Pareek SL, Dhankher OP, Li X, Mansoor S, Pareek A (2020) Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing. J Exp Bot 71(2):470–479

    CAS  PubMed  Google Scholar 

  • Zaidi SS, Tashkandi M, Mansoor S, Mahfouz MM (2016) Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance. Front Plant Sci 7:1673

    PubMed  PubMed Central  Google Scholar 

  • Zelimaker T, Ludwig NR, Elberse J, Seidl MF, Berke L, Van Doorn A, Schuurink RC, Snel B, Van den Ackerveken G (2015) DOWNY MILDEW RESISTANT 6 and DMR 6-LIKE OXYGENASE 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. Plant J 81:210–222

    Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Liu J, Chai Z, Chen S, Bai Y, Zong Y, Chen K, Li J, Jiang L, Gao C (2019) Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat Plants 5:480–485

    CAS  PubMed  Google Scholar 

  • Zhang T, Zheng Q, Yi X, An H, Zhao Y, Ma S, Zhou G (2018) Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol J 16:1415–1423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017) Simultaneous modification of three homologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Prashant Kumar Singh is thankful to UGC, New Delhi, for a Start-Up Research Grant.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, M.K. et al. (2022). Tailoring Disease Resilience Crops through CRISPR/Cas. In: Kumar, A. (eds) Microbial Biocontrol: Food Security and Post Harvest Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87289-2_7

Download citation

Publish with us

Policies and ethics