Skip to main content

Count-Based Imaging Methods

  • Chapter
  • First Online:
Hard X-Ray Imaging of Solar Flares

Abstract

Analysis of the RHESSI and STIX data requires some novel tools, all tailored to, and indeed in many cases optimized for, the construction of an image from a sparse set of relatively noisy Fourier components obtained using either the temporally modulated count rates measured with RHESSI or the Moiré patterns measured with STIX. The raw data from both instruments used for all of the image reconstruction algorithms to be discussed in this chapter consist of count rates accumulated into a relatively large number (∼ 103 − 106) of short time bins of ∼0.5–100 ms each. The essence of many of these image reconstruction methods has been described by Hurford et al. (Solar Phys 210:61–86, 2002) for RHESSI and by Massa et al. (Astron Astrophys 624:A130, 2019) for STIX. Here we discuss several of them in some detail, and we add a discussion of methods that have been developed more recently. Example applications using solar flare data are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See https://hesperia.gsfc.nasa.gov/rhessidatacenter/imaging/BPClean_changes.pdf for more details.

  2. 2.

    Note that, in viewing the solar disk from the Earth, solar North is at the top, but the East→West motion of the Sun in the sky is from left to right, so that displacements to the right of the disk are Westward and those to the left are Eastward, contrary to one’s immediate intuition. In a sense, we are viewing the compass rose “from the inside.”

  3. 3.

    In thermodynamics, the entropy is maximized subject to a set of specified physical constraints. In the simplest example, the p i correspond to different energies E i, and conservation of total energy requires \(U = \sum p_i E_i = \mathrm {constant}\), so that the variation \(dU=\sum E_i dp_i = 0\). The entropy is a maximum when \(dS = -\sum (\ln p_i + 1) \, dp_i = 0\) and, since \(\sum dp_i = 0\), it follows that \(dS^* = -\sum (\ln p_i + \alpha ) \, dp_i = 0\), where α is a Lagrange multiplier. Writing dS − β dU = 0, where β is another Lagrange multiplier, gives \(\sum (\ln p_i + \alpha + \beta E_i) \, dp_i = 0\) and, since the individual variations dp i are arbitrary, each term in this sum must equal zero. This immediately gives the well-known Maxwell-Boltzmann distribution of energies \(p_i \propto e^{-\beta E_i}\)—cf. Eq. (1.1).

  4. 4.

    https://hesperia.gsfc.nasa.gov/rhessi/software/imaging-software/pixon/index.html.

References

  1. M.J. Aschwanden, J.C. Brown, E.P. Kontar, Chromospheric height and density measurements in a solar flare observed with RHESSI II. Data analysis. Solar Phys. 210, 383–405 (2002)

    Article  Google Scholar 

  2. M.J. Aschwanden, E. Schmahl, The RHESSI Team, Reconstruction of RHESSI solar flare images with a forward fitting method. Solar Phys. 210, 193–211 (2002)

    Google Scholar 

  3. M.J. Aschwanden, T.R. Metcalf, S. Krucker, J. Sato, A.J. Conway, G.J. Hurford, E.J. Schmahl, On the photometric accuracy of RHESSI imaging and spectrosocopy. Solar Phys. 219, 149–157 (2004)

    Article  Google Scholar 

  4. M. Avriel, Nonlinear Programming: Analysis and Methods (Courier Corporation, North Chelmsford, 2003)

    MATH  Google Scholar 

  5. M. Battaglia, E.P. Kontar, I.G. Hannah, The influence of albedo on the size of hard X-ray flare sources. Astron. Astrophys. 526, A3+ (2011)

    Google Scholar 

  6. F. Benvenuto, R. Schwartz, M. Piana, A.M. Massone, Expectation maximization for hard X-ray count modulation profiles. Astron. Astrophys. 555, A61 (2013)

    Article  Google Scholar 

  7. F. Benvenuto, H. Haddar, B. Lantz, A robust inversion method according to a new notion of regularization for poisson data with an application to nanoparticle volume determination. SIAM J. Appl. Math. 76(1), 276–292 (2016)

    Article  MathSciNet  Google Scholar 

  8. J.C. Brown, M.J. Aschwanden, E.P. Kontar. Chromospheric height and density measurements in a solar flare observed with RHESSI I. Theory. Solar Phys., 210, 373–381 (2002)

    Article  Google Scholar 

  9. B.R. Dennis, R.L. Pernak, Hard X-ray flare source sizes measured with the ramaty high energy solar spectroscopic imager. Astrophys. J. 698, 2131–2143 (2009)

    Article  Google Scholar 

  10. P. Durouchoux, H. Hudson, J. Matteson, G. Hurford, K. Hurley, E. Orsal, Gamma-ray Imaging with a rotating modulator. Astron. Astrophys. 120(1), 150–155 (1983)

    Google Scholar 

  11. C. Forbes, M. Evans, N. Hastings, B. Peacock, Statistical Distributions, chapter 35 (Wiley, Hoboken, 2010), pp. 152–156

    Google Scholar 

  12. J.A. Högbom, Aperture synthesis with a non-regular distribution of interferometer baselines. Astron. Astrophys. Suppl. 15, 417 (1974)

    Google Scholar 

  13. G.J. Hurford, E.J. Schmahl, R.A. Schwartz, A.J. Conway, M.J. Aschwanden, A. Csillaghy, B.R. Dennis, C. Johns-Krull, S. Krucker, R.P. Lin, J. McTiernan, T.R. Metcalf, J. Sato, D.M. Smith, The RHESSI imaging concept. Solar Phys. 210, 61–86 (2002)

    Article  Google Scholar 

  14. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)

    Article  MathSciNet  Google Scholar 

  15. N.L.S. Jeffrey, The Spatial, Spectral and Polarization Properties of Solar Flare X-ray Sources. PhD Thesis, University of Glasgow, 2014

    Google Scholar 

  16. J. Kašparová, E.P. Kontar, J.C. Brown, Hard X-ray spectra and positions of solar flares observed by rhessi: photospheric albedo, directivity and electron spectra. Astron. Astrophys. 466, 705–712 (2007)

    Article  Google Scholar 

  17. E.P. Kontar, N.L.S. Jeffrey, Positions and sizes of X-ray solar flare sources. Astron. Astrophys. 513, L2+ (2010)

    Google Scholar 

  18. E.P. Kontar, I.G. Hannah, N.L.S. Jeffrey, M. Battaglia, The sub-arcsecond hard X-ray structure of loop footpoints in a solar flare. Astrophys. J. 717, 250–256 (2010)

    Article  Google Scholar 

  19. S. Krucker, E.P. Kontar, S. Christe, L. Glesener, R.P. Lin, Electron acceleration associated with solar jets. Astrophys. J. 742(2), 82 (2011)

    Google Scholar 

  20. M.E. Machado, E.H. Avrett, J.E. Vernazza, R.W. Noyes, Semiempirical models of chromospheric flare regions. Astrophys. J. 242, 336–351 (1980)

    Article  Google Scholar 

  21. P. Massa, M. Piana, A.M. Massone, F. Benvenuto, Count-based imaging model for the spectrometer/telescope for imaging X-rays (STIX) in solar orbiter. Astron. Astrophys. 624, A130 (2019)

    Article  Google Scholar 

  22. T.R. Metcalf, H.S. Hudson, T. Kosugi, R.C. Puetter, R.K. Pina, Pixon-based multiresolution image reconstruction for Yohkoh’s hard X-ray telescope. Astrophys. J. 466, 585 (1996)

    Article  Google Scholar 

  23. R.K. Pina, R.C. Puetter, Bayesian image reconstruction - the pixon and optimal image modeling. Publ. Astron. Soc. Pacif. 105, 630–637 (1993)

    Article  Google Scholar 

  24. R.C. Puetter, Pixon-based multiresolution image reconstruction and the quantification of picture information content. Int. J. Imag. Syst. Technol. 6(4), 314–331 (1995)

    Article  Google Scholar 

  25. J. Sato, T. Kosugi, K. Makishima, Improvement of YOHKOH hard X-ray imaging. Publ. Astron. Soc. Jpn 51, 127–150 (1999)

    Article  Google Scholar 

  26. L.A. Shepp, Y.Vardi, Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imag. 1(2), 113–122 (1982)

    Article  Google Scholar 

  27. R.C. Tolman, The Principles of Statistical Mechanics. (Clarendon Press, Oxford, 1938)

    Google Scholar 

  28. J.E. Vernazza, E.H. Avrett, R. Loeser, Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet sun. Astrophys. J. Suppl. 45, 635–725 (1981)

    Google Scholar 

  29. A. Warmuth, G. Mann, Thermal and nonthermal hard X-ray source sizes in solar flares obtained from RHESSI observations. I. Observations and evaluation of methods. Astron. Astrophys. 552, A86 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piana, M., Emslie, A.G., Massone, A.M., Dennis, B.R. (2022). Count-Based Imaging Methods. In: Hard X-Ray Imaging of Solar Flares. Springer, Cham. https://doi.org/10.1007/978-3-030-87277-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87277-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87276-2

  • Online ISBN: 978-3-030-87277-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics