Skip to main content

RHESSI and STIX

  • Chapter
  • First Online:
Hard X-Ray Imaging of Solar Flares

Abstract

In this chapter we describe the design features of the RHESSI and STIX instruments, both of which use bi-grid modulation collimators pointed at the Sun to obtain information that can be used to make X-ray images. The difference is that RHESSI is on a rapidly rotating spacecraft while STIX is on a 3-axis stabilized spacecraft. We describe the manner in which imaging information is encoded by the bi-grid collimators and the strengths and limitations of the two imaging concepts necessitated by the different spacecraft motions. We also describe the software that has been developed to transform the raw data collected into higher-level products useful for scientific studies. We illustrate the power of such imaging techniques using an example solar flare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Solar flares can be classified in many ways. One of the most common uses the observed flux in the 0.1–0.8 nm “soft” X-ray range, as observed by the series of Geostationary Operational Environmental Satellites (GOES). Similar to the Richter scale for earthquakes, the classification scale is logarithmic: A-class events have fluxes less than 10−7 Watts per square meter (W m−2), B-class events have fluxes between 10−7 and 10−6 W m−2, C-class events have fluxes between 10−6 and 10−5 W m−2, M-class events have fluxes between 10−5 and 10−4 W m−2, and X-class events have fluxes exceeding 10−4 W m−2. Within each class, a number indicates the multiplier of the lowest flux appropriate to that classification; for example, an M5 event has a 0.1–0.8 nm flux of 5 × 10−5 W m−2. The most intense flare recorded by GOES in the RHESSI era was an X28 event (with an 0.1–0.8 nm flux of 28 × 10−4 = 2.8 × 10−3 W m−2) that occurred on 2003 November 4.

  2. 2.

    The above analysis applies when the occulting grids have exactly equal slit and slat widths; then only odd cosine harmonics are present. For unequal slit/slat widths, the Fourier expansion includes even cosine harmonics as well.

  3. 3.

    https://sprg.ssl.berkeley.edu/~tohban/wiki/index.php/RHESSI_Visibilities.

  4. 4.

    https://hesperia.gsfc.nasa.gov/rhessi3/software/spectroscopy/spectral-analysis-software/index.html.

  5. 5.

    Detailed documentation, including instructions for installing SSW, is available online at https://hesperia.gsfc.nasa.gov/rhessi/software/installation/index.html. Information on how to access and use all RHESSI data and software is available at https://hesperia.gsfc.nasa.gov/rhessi/.

  6. 6.

    The original name for RHESSI was HESSI. The leading “R” was added shortly after launch in tribute to Reuven Ramaty, one of the pioneers of gamma-ray astronomy and a major contributor to establishing the scientific justification for RHESSI’s high resolution gamma-ray spectroscopy. Sadly, he died just months before RHESSI was launched.

  7. 7.

    The four pixels in each detector are numbered as −2, −1, 0 and 1, so that the quantity e iπn∕2, used in the sequel, takes on the purely real or imaginary values −1, − i, 1, and i.

References

  1. M. Battaglia, E.P. Kontar, I.G. Hannah, The influence of albedo on the size of hard X-ray flare sources. Astron. Astrophys. 526, A3+ (2011)

    Google Scholar 

  2. W. Cash, Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 228, 939–947 (1979)

    Article  Google Scholar 

  3. D.W. Datlowe, Errata: pulse pile-up in hard X-ray detector systems [Space Sci. Instrum., vol. 1, p. 389–406 (1975)]. Space Sci. Instrum. 2, 523–+ (1976)

    Google Scholar 

  4. D.W. Datlowe, Summary of “Pulse Pile-up in Solar Hard X-Ray Detector Systems”. Space Sci. Instrum. 2, 239–+ (1976)

    Google Scholar 

  5. D.W. Datlowe, Pulse pile-up in nuclear particle detection systems with rapidly varying counting rates. Nuclear Instrum. Methods 145(2), 379–387 (1977)

    Article  Google Scholar 

  6. B.R. Dennis, A.K. Tolbert, A remarkably narrow RHESSI X-ray flare on 2011 September 25. Astrophys. J. 887(2), 131 (2019)

    Google Scholar 

  7. M.A. Duval-Poo, M. Piana, A.M. Massone, Solar hard X-ray imaging by means of compressed sensing and finite isotropic wavelet transform. Astron. Astrophys. 615, A59 (2018)

    Article  Google Scholar 

  8. S.L. Freeland, B.N. Handy, Data analysis with the SolarSoft system. Solar Phys. 182(2), 497–500 (1998)

    Article  Google Scholar 

  9. W.-Q. Gan, C. Zhu, Y.-Y. Deng, H. Li, Y. Su, H.-Y. Zhang, B. Chen, Z. Zhang, J. Wu, L. Deng, Y. Huang, J.-F. Yang, J.-J. Cui, J. Chang, C. Wang, J. Wu, Z.-S. Yin, W. Chen, C. Fang, Y.-H. Yan, J. Lin, W.-M. Xiong, B. Chen, H.-C. Bao, C.-X. Cao, Y.-P. Bai, T. Wang, B.-L. Chen, X.-Y. Li, Y. Zhang, L. Feng, J.-T. Su, Y. Li, W. Chen, Y.-P. Li, Y.-N. Su, H.-Y. Wu, M. Gu, L. Huang, X.-J. Tang, Advanced space-based solar observatory (ASO-S):an overview. Res. Astron. Astrophys. 19(11), 156 (2019)

    Google Scholar 

  10. S. Giordano, N. Pinamonti, M. Piana, A.M. Massone, The process of data formation for the spectrometer/telescope for imaging X-rays (STIX) in solar orbiter. SIAM J. Imag. Sci. 8(2), 1315–1331 (2015)

    Article  MathSciNet  Google Scholar 

  11. G.J. Hurford, D.W. Curtis, The PMTRAS roll aspect system on RHESSI. Solar Phys. 210, 101–113 (2002)

    Article  Google Scholar 

  12. G.J. Hurford, E.J. Schmahl, R.A. Schwartz, A.J. Conway, M.J. Aschwanden, A. Csillaghy, B.R. Dennis, C. Johns-Krull, S. Krucker, R.P. Lin, J. McTiernan, T.R. Metcalf, J. Sato, D.M. Smith, The RHESSI imaging concept. Solar Phys. 210, 61–86 (2002)

    Article  Google Scholar 

  13. G.J. Hurford, E.J. Schmahl, R.A. Schwartz, Measurement and interpretation of X-ray visibilities with RHESSI, in AGU Spring Meeting Abstracts, vol. 2005 (2005), pp. SP21A–12

    Google Scholar 

  14. G.J. Hurford, S. Krucker, R.P. Lin, R.A. Schwartz, G.H. Share, D.M. Smith, Gamma-Ray imaging of the 2003 October/November solar flares. Astrophys. J. Lett. 644, L93–L96 (2006)

    Article  Google Scholar 

  15. J. Kašparová, E.P. Kontar, J.C. Brown, Hard X-ray spectra and positions of solar flares observed by rhessi: photospheric albedo, directivity and electron spectra. Astron. Astrophys. 466, 705–712 (2007)

    Article  Google Scholar 

  16. E.P. Kontar, N.L.S. Jeffrey, Positions and sizes of X-ray solar flare sources. Astron. Astrophys. 513, L2+ (2010)

    Google Scholar 

  17. T. Kosugi, K. Makishima, T. Murakami, T. Sakao, T. Dotani, M. Inda, K. Kai, S. Masuda, H. Nakajima, Y. Ogawara, M. Sawa, K. Shibasaki, The hard X-ray telescope (HXT) for the SOLAR-A mission. Solar Phys. 136(1), 17–36 (1991)

    Article  Google Scholar 

  18. S. Krucker, G.J. Hurford, O. Grimm, S. Kögl, H.P. Gröbelbauer, L. Etesi, D. Casadei, A. Csillaghy, A.O. Benz, N.G. Arnold, F. Molendini, P. Orleanski, D. Schori, H. Xiao, M. Kuhar, N. Hochmuth, S. Felix, F. Schramka, S. Marcin, S. Kobler, L. Iseli, M. Dreier, H.J. Wiehl, L. Kleint, M. Battaglia, E. Lastufka, H. Sathiapal, K. Lapadula, M. Bednarzik, G. Birrer, St. Stutz, Ch. Wild, F. Marone, K.R. Skup, A. Cichocki, K. Ber, K. Rutkowski, W. Bujwan, G. Juchnikowski, M. Winkler, M. Darmetko, M. Michalska, K. Seweryn, A. Białek, P. Osica, J. Sylwester, M. Kowalinski, D. Ścisłowski, M. Siarkowski, M. Steślicki, T. Mrozek, P. Podgórski, A. Meuris, O. Limousin, O. Gevin, I. Le Mer, S. Brun, A. Strugarek, N. Vilmer, S. Musset, M. Maksimović, F. Fárník, Z. Kozáček, J. Kašparová, G. Mann, H. Önel, A. Warmuth, J. Rendtel, J. Anderson, S. Bauer, F. Dionies, J. Paschke, D. Plüschke, M. Woche, F. Schuller, A.M. Veronig, E.C.M. Dickson, P.T. Gallagher, S.A. Maloney, D.S. Bloomfield, M. Piana, A.M. Massone, F. Benvenuto, P. Massa, R.A. Schwartz, B.R. Dennis, H.F. van Beek, J. Rodríguez-Pacheco, R.P. Lin, The spectrometer/telescope for imaging X-rays (STIX). Astron. Astrophys. 642, A15 (2020)

    Google Scholar 

  19. J.R. Lemen, A.M. Title, D.J. Akin, P.F. Boerner, C. Chou, J.F. Drake, D.W. Duncan, C.G. Edwards, F.M. Friedlaender, G.F. Heyman, N.E. Hurlburt, N.L. Katz, G.D. Kushner, M. Levay, R.W. Lindgren, D.P. Mathur, E.L. McFeaters, S. Mitchell, R.A. Rehse, C.J. Schrijver, L.A. Springer, R.A. Stern, T.D. Tarbell, J.-P. Wuelser, C.J. Wolfson, C. Yanari, J.A. Bookbinder, P.N. Cheimets, D. Caldwell, E.E. Deluca, R. Gates, L. Golub, S. Park, W.A. Podgorski, R.I. Bush, P.H. Scherrer, M.A. Gummin, P. Smith, G. Auker, P. Jerram, P. Pool, R. Soufli, D.L. Windt, S. Beardsley, M. Clapp, J. Lang, N. Waltham, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys. 275, 17–40 (2012)

    Google Scholar 

  20. R.P. Lin, B.R. Dennis, G.J. Hurford, D.M. Smith, A. Zehnder, P.R. Harvey, D.W. Curtis, D. Pankow, P. Turin, M. Bester, A. Csillaghy, M. Lewis, N. Madden, H.F. van Beek, M. Appleby, T. Raudorf, J. McTiernan, R. Ramaty, E. Schmahl, R. Schwartz, S. Krucker, R. Abiad, T. Quinn, P. Berg, M. Hashii, R. Sterling, R. Jackson, R. Pratt, R.D. Campbell, D. Malone, D. Landis, C.P. Barrington-Leigh, S. Slassi-Sennou, C. Cork, D. Clark, D. Amato, L. Orwig, R. Boyle, I.S. Banks, K. Shirey, A.K. Tolbert, D. Zarro, F. Snow, K. Thomsen, R. Henneck, A. McHedlishvili, P. Ming, M. Fivian, John Jordan, Richard Wanner, Jerry Crubb, J. Preble, M. Matranga, A. Benz, H. Hudson, R.C. Canfield, G.D. Holman, C. Crannell, T. Kosugi, A.G. Emslie, N. Vilmer, J.C. Brown, C. Johns-Krull, M. Aschwanden, T. Metcalf, A. Conway, The Reuven Ramaty high-energy solar spectroscopic imager (RHESSI). Solar Phys. 210(1), 3–32 (2002)

    Google Scholar 

  21. P. Massa, M. Piana, A.M. Massone, F. Benvenuto, Count-based imaging model for the spectrometer/telescope for imaging X-rays (STIX) in solar orbiter. Astron. Astrophys. 624, A130 (2019)

    Article  Google Scholar 

  22. R.A. Schwartz, The effect of pulse-pileup on RHESSI image reconstruction, in AGU Spring Meeting Abstracts, vol. 2008 (2008), pp. SP51B–03

    Google Scholar 

  23. R.A. Schwartz, A. Csillaghy, A.K. Tolbert, G.J. Hurford, J. McTiernan, D. Zarro, RHESSI data analysis software: rationale and methods. Solar Phys. 210(1), 165–191 (2002)

    Article  Google Scholar 

  24. D.M. Smith, R.P. Lin, P. Turin, et al. The RHESSI spectrometer. Solar Phys. 210, 33–60 (2002)

    Article  Google Scholar 

  25. Z. Zhang, D.-Y. Chen, J. Wu, J. Chang, Y.-M. Hu, Y. Su, Y. Zhang, J.-P. Wang, Y.-M. Liang, T. Ma, J.-H. Guo, M.-S. Cai, Y.-Q. Zhang, Y.-Y. Huang, X.-Y. Peng, Z.-B. Tang, X. Zhao, H.-H. Zhou, L.-G. Wang, J.-X. Song, M. Ma, G.-Z. Xu, J.-F. Yang, D. Lu, Y.-H. He, J.-Y. Tao, X.-L. Ma, B.-G. Lv, Y.-P. Bai, C.-X. Cao, Y. Huang, W.-Q. Gan, Hard X-ray imager (HXI) onboard the ASO-S mission. Res. Astron. Astrophys. 19(11), 160 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piana, M., Emslie, A.G., Massone, A.M., Dennis, B.R. (2022). RHESSI and STIX . In: Hard X-Ray Imaging of Solar Flares. Springer, Cham. https://doi.org/10.1007/978-3-030-87277-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87277-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87276-2

  • Online ISBN: 978-3-030-87277-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics