Skip to main content

X-Ray Imaging Methods

  • Chapter
  • First Online:
Hard X-Ray Imaging of Solar Flares

Abstract

Imaging in X-rays is inherently challenging because X-ray wavelengths are comparable to atomic dimensions (or, equivalently, X-ray photon energies are comparable to the binding energies of electrons in atoms), so that a ray-based focusing optics approach is not generally tenable. This problem becomes more acute at the shorter wavelengths corresponding to hard X-ray energies. In this chapter various X-ray imaging methods are described, from the basic medical technique using a single point source of X-rays to image body parts, to the techniques used in solar physics and astrophysics to image the X-ray sources themselves. X-rays interact with matter through both their wave and particle properties; the principal processes involved are absorption, scattering, reflection, refraction, and diffraction. Techniques are described that use these different forms of the interaction of X-rays with matter to obtain images of sources of astrophysical interest. Examples are provided of X-ray telescope designs to achieve the highest sensitivity, angular resolution, and dynamic range over hard X-ray energies ranging from 10 keV to 1 MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://commons.wikimedia.org/w/index.php?curid=5059748.

  2. 2.

    http://www.rxollc.com/technology/index.html.

  3. 3.

    https://en.wikipedia.org/wiki/Wolter_telescope.

  4. 4.

    Note that θ is not the angle to the normal, as used, e.g., in Snell’s Law.

References

  1. L.W. Acton, J.L. Culhane, A.H. Gabriel, R.D. Bentley, J.A. Bowles, J.G. Firth, M.L. Finch, C.W. Gilbreth, P. Guttridge, R.W. Hayes, E.G. Joki, B.B. Jones, B.J. Kent, J.W. Leibacher, R.A. Nobles, T.J. Patrick, K.J.H. Phillips, C.G. Rapley, P.H. Sheather, J.C. Sherman, J.P. Stark, L.A. Springer, R.F. Turner, and C.J. Wolfson, The Soft X-ray polychromator for the solar maximum mission. Solar Phys. 65(1), 53–71 (1980)

    Article  Google Scholar 

  2. C. Badenes, X-ray studies of supernova remnants: a different view of supernova explosions. Proc. Nat. Acad. Sci. 107(16), 7141–7146 (2010)

    Article  Google Scholar 

  3. R.L. Blake, T.A. Chubb, H. Friedman, A.E. Unzicker. Interpretation of X-ray photograph of the sun. Astrophys. J. 137, 3 (1963)

    Article  Google Scholar 

  4. M.J. Cieślak, K.A.A. Gamage, R. Glover, Coded-aperture imaging systems: past, present and future development - a review. Radiation Measur. 92, 59–71 (2016)

    Article  Google Scholar 

  5. B.R. Dennis, G.K. Skinner, M.J. Li, A.Y. Shih, Very high-resolution solar X-ray imaging using diffractive optics. Solar Phys. 279(2), 573–588 (2012)

    Article  Google Scholar 

  6. R.H. Dicke, Scatter-hole cameras for X-rays and gamma rays. Astrophys. J. Lett. 153, L101 (1968)

    Article  Google Scholar 

  7. W.-Q. Gan, C. Zhu, Y.-Y. Deng, H. Li, Y. Su, H.-Y. Zhang, B. Chen, Z. Zhang, J. Wu, L. Deng, Y. Huang, J.-F. Yang, J.-J. Cui, J. Chang, C. Wang, J. Wu, Z.-S. Yin, W. Chen, C. Fang, Y.-H. Yan, J. Lin, W.-M. Xiong, B. Chen, H.-C. Bao, C.-X. Cao, Y.-P. Bai, T. Wang, B.-L. Chen, X.-Y. Li, Y. Zhang, L. Feng, J.-T. Su, Y. Li, W. Chen, Y.-P. Li, Y.-N. Su, H.-Y. Wu, M. Gu, L. Huang, X.-J. Tang, Advanced space-based solar observatory (ASO-S):an overview. Res. Astron. Astrophys. 19(11), 156 (2019)

    Google Scholar 

  8. N. Gehrels, G. Chincarini, P. Giommi, K.O. Mason, J.A. Nousek, A.A. Wells, N.E. White, S.D. Barthelmy, D.N. Burrows, L.R. Cominsky, K.C. Hurley, F.E. Marshall, P. Mészáros, P.W.A. Roming, L. Angelini, L.M. Barbier, T. Belloni, S. Campana, P.A. Caraveo, M.M. Chester, O. Citterio, T.L. Cline, M.S. Cropper, J.R. Cummings, A.J. Dean, E.D. Feigelson, E.E. Fenimore, D.A. Frail, A.S. Fruchter, G.P. Garmire, K. Gendreau, G. Ghisellini, J. Greiner, J.E. Hill, S.D. Hunsberger, H.A. Krimm, S.R. Kulkarni, P. Kumar, F. Lebrun, N.M. Lloyd-Ronning, C.B. Markwardt, B.J. Mattson, R.F. Mushotzky, J.P. Norris, J. Osborne, B. Paczynski, D.M. Palmer, H.S. Park, A.M. Parsons, J. Paul, M.J. Rees, C.S. Reynolds, J.E. Rhoads, T.P. Sasseen, B.E. Schaefer, A.T. Short, A.P. Smale, I.A. Smith, L. Stella, G. Tagliaferri, T. Takahashi, M. Tashiro, L.K. Townsley, J. Tueller, M.J.L. Turner, M. Vietri, W. Voges, M.J. Ward, R. Willingale, F.M. Zerbi, W.W. Zhang, The Swift Gamma-Ray Burst Mission. Astrophys. J. 611(2), 1005–1020 (2004)

    Google Scholar 

  9. F.A. Harrison, W.W. Craig, F.E. Christensen, C.J. Hailey, W.W. Zhang, S.E. Boggs, D. Stern, W.R. Cook, K. Forster, P. Giommi, B.W. Grefenstette, Y. Kim, T. Kitaguchi, J.E. Koglin, K.K. Madsen, P.H. Mao, H. Miyasaka, K. Mori, M. Perri, M.J. Pivovaroff, S. Puccetti, V.R. Rana, N.J. Westergaard, J. Willis, A. Zoglauer, H. An, M. Bachetti, N.M. Barrière, E C. Bellm, V. Bhalerao, N.F. Brejnholt, F. Fuerst, C.C. Liebe, C.B. Markwardt, M. Nynka, J.K. Vogel, D.J. Walton, D.R. Wik, D.M. Alexander, L.R. Cominsky, A.E. Hornschemeier, A. Hornstrup, V.M. Kaspi, G.M. Madejski, G. Matt, S. Molendi, D.M. Smith, J.A. Tomsick, M. Ajello, D.R. Ballantyne, M. Baloković, D. Barret, F.E. Bauer, R.D. Blandford, W. N Brandt, L.W. Brenneman, J. Chiang, D. Chakrabarty, J. Chenevez, A. Comastri, F. Dufour, M. Elvis, A.C. Fabian, D. Farrah, C.L. Fryer, E.V. Gotthelf, J.E. Grindlay, D.J. Helfand, R. Krivonos, D.L. Meier, J.M. Miller, L. Natalucci, P. Ogle, E.O. Ofek, A. Ptak, S.P. Reynolds, J.R. Rigby, G. Tagliaferri, S.E. Thorsett, E. Treister, C.M. Urry, The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission. Astrophys. J. 770(2), 103 (2013)

    Google Scholar 

  10. G.J. Hurford, X-ray imaging with collimators, masks and grids. ISSI Sci. Rep. Ser. 9, 223–234 (2010)

    Google Scholar 

  11. G.J. Hurford, E.J. Schmahl, R.A. Schwartz, A.J. Conway, M.J. Aschwanden, A. Csillaghy, B.R. Dennis, C. Johns-Krull, S. Krucker, R.P. Lin, J. McTiernan, T.R. Metcalf, J. Sato, D.M. Smith, The RHESSI imaging concept. Solar Phys. 210, 61–86 (2002)

    Article  Google Scholar 

  12. L. Kipp, M. Skibowski, R.L. Johnson, R. Berndt, R. Adelung, S. Harm, R. Seemann, Sharper images by focusing soft X-rays with photon sieves. Nature 414(6860), 184–188 (2001)

    Article  Google Scholar 

  13. K. Kobayashi, J. Cirtain, A.R. Winebarger, K. Korreck, L. Golub, R.W. Walsh, B. De Pontieu, C. DeForest, A. Title, S. Kuzin, S. Savage, D. Beabout, B. Beabout, W. Podgorski, D. Caldwell, K. McCracken, M. Ordway, H. Bergner, R. Gates, S. McKillop, P. Cheimets, S. Platt, N. Mitchell, D. Windt, The high-resolution coronal imager (Hi-C). Solar Phys. 289(11), 4393–4412 (2014)

    Article  Google Scholar 

  14. T. Kosugi, K. Makishima, T. Murakami, T. Sakao, T. Dotani, M. Inda, K. Kai, S. Masuda, H. Nakajima, Y. Ogawara, M. Sawa, K. Shibasaki, The hard X-ray telescope (HXT) for the SOLAR-A mission. Solar Phys. 136(1), 17–36 (1991)

    Article  Google Scholar 

  15. S. Krucker, G.J. Hurford, O. Grimm, S. Kögl, H.P. Gröbelbauer, L. Etesi, D. Casadei, A. Csillaghy, A.O. Benz, N.G. Arnold, F. Molendini, P. Orleanski, D. Schori, H. Xiao, M. Kuhar, N. Hochmuth, S. Felix, F. Schramka, S. Marcin, S. Kobler, L. Iseli, M. Dreier, H.J. Wiehl, L. Kleint, M. Battaglia, E. Lastufka, H. Sathiapal, K. Lapadula, M. Bednarzik, G. Birrer, St. Stutz, Ch. Wild, F. Marone, K.R. Skup, A. Cichocki, K. Ber, K. Rutkowski, W. Bujwan, G. Juchnikowski, M. Winkler, M. Darmetko, M. Michalska, K. Seweryn, A. Białek, P. Osica, J. Sylwester, M. Kowalinski, D. Ścisłowski, M. Siarkowski, M. Steślicki, T. Mrozek, P. Podgórski, A. Meuris, O. Limousin, O. Gevin, I. Le Mer, S. Brun, A. Strugarek, N. Vilmer, S. Musset, M. Maksimović, F. Fárník, Z. Kozáček, J. Kašparová, G. Mann, H. Önel, A. Warmuth, J. Rendtel, J. Anderson, S. Bauer, F. Dionies, J. Paschke, D. Plüschke, M. Woche, F. Schuller, A.M. Veronig, E.C.M. Dickson, P.T. Gallagher, S.A. Maloney, D.S. Bloomfield, M. Piana, A.M. Massone, F. Benvenuto, P. Massa, R.A. Schwartz, B.R. Dennis, H.F. van Beek, J. Rodríguez-Pacheco, R.P. Lin, The spectrometer/telescope for imaging X-rays (STIX). Astron. Astrophys. 642, A15 (2020)

    Google Scholar 

  16. E. Lastufka, D. Casadei, G. Hurford, M. Kuhar, G. Torre, S. Krucker, The micro solar flare apparatus (MiSolFA) instrument concept. Adv. Space Res. 66(1), 10–20 (2020)

    Article  Google Scholar 

  17. J.R. Lemen, A.M. Title, D.J. Akin, P.F. Boerner, C. Chou, J.F. Drake, D.W. Duncan, C.G. Edwards, F.M. Friedlaender, G.F. Heyman, N.E. Hurlburt, N.L. Katz, G.D. Kushner, M. Levay, R.W. Lindgren, D.P. Mathur, E.L. McFeaters, S. Mitchell, R.A. Rehse, C.J. Schrijver, L.A. Springer, R.A. Stern, T.D. Tarbell, J.-P. Wuelser, C.J. Wolfson, C. Yanari, J.A. Bookbinder, P.N. Cheimets, D. Caldwell, E.E. Deluca, R. Gates, L. Golub, S. Park, W.A. Podgorski, R.I. Bush, P.H. Scherrer, M.A. Gummin, P. Smith, G. Auker, P. Jerram, P. Pool, R. Soufli, D.L. Windt, S. Beardsley, M. Clapp, J. Lang, N. Waltham, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys. 275, 17–40 (2012)

    Google Scholar 

  18. D. Martínez-Galarce, R. Soufli, D.L. Windt, M. Bruner, E. Gullikson, S. Khatri, E. Spiller, J.C. Robinson, S. Baker, E. Prast, Multisegmented, multilayer-coated mirrors for the solar ultraviolet imager. Optical Eng. 52, 095102 (2013)

    Article  Google Scholar 

  19. F. Natterer, G. Wang, The mathematics of computerized tomography. Med. Phys. 29(1), 107–108 (2002)

    Google Scholar 

  20. F. Natterer, F. Wübbeling, Mathematical Methods in Image Reconstruction. (Society for Industrial and Applied Mathematics, Philadelphia, 2001)

    Google Scholar 

  21. M. Oda, High-resolution X-ray collimator with broad field of view for astronomical use. Appl. Optics 4, 143–143 (1965)

    Article  Google Scholar 

  22. M. Oda, X-ray imaging techniques - modulation collimator and coded mask. Adv. Space Res. 2, 207–216 (1983)

    Article  Google Scholar 

  23. T.A. Prince, G.J. Hurford, H.S. Hudson, C.J. Crannell. Gamma-Ray and hard X-ray imaging of solar flares. Solar Phys. 118(1–2), 269–290 (1988)

    Article  Google Scholar 

  24. V. Schoenfelder, H. Aarts, K. Bennett, H. de Boer, J. Clear, W. Collmar, A. Connors, A. Deerenberg, R. Diehl, A. von Dordrecht, J.W. den Herder, W. Hermsen, M. Kippen, L. Kuiper, G. Lichti, J. Lockwood, J. Macri, M. McConnell, D. Morris, R. Much, J. Ryan, G. Simpson, M. Snelling, G. Stacy, H. Steinle, A. Strong, B.N. Swanenburg, B. Taylor, C. de Vries, C. Winkler, Instrument description and performance of the imaging Gamma-Ray telescope COMPTEL aboard the compton Gamma-Ray observatory. Astrophys. J. Suppl. 86, 657 (1993)

    Google Scholar 

  25. G.K. Skinner, Diffractive/refractive optics for high energy astronomy. I. Gamma-ray Phase fresnel lenses. Astron. Astrophys. 375, 691–700 (2001)

    Google Scholar 

  26. G.K. Skinner, Diffractive X-ray telescopes. X-Ray Optics and Instrumentation, 2010. Special Issue on X-Ray Focusing: Techniques and Applications, id.743485 (2010)

    Google Scholar 

  27. G.K. Skinner, B.R. Dennis, J.F. Krizmanic, E.P. Kontar, Science enabled by high precision inertial formation flying. Int. J. Space Sci. Eng. 1, 331 (2013)

    Article  Google Scholar 

  28. C.C. Sleator, A. Zoglauer, A.W. Lowell, C.A. Kierans, N. Pellegrini, J. Beechert, S.E. Boggs, T.J. Brandt, H. Lazar, J.M. Roberts, T. Siegert, J.A. Tomsick, Benchmarking simulations of the compton spectrometer and imager with calibrations. Nuclear Instrum. Methods Phys. Res. A 946, 162643 (2019)

    Article  Google Scholar 

  29. A. Strong, W. Collmar, COMPTEL reloaded: a heritage project in MeV astronomy. Mem. Soc. Astron. Italiana 90, 297 (2019)

    Google Scholar 

  30. J. Sylwester, I. Gaicki, Z. Kordylewski, M. Nowak, S. Kowalinski, M. Sjarkowski, W. Bentley, R.D. Trzebinski, M.W. Whyndham, P.R. Guttridge, J.L. Culhane, J. Lang, K.J.H. Phillips, C.M. Brown, G.A. Doschek, V.N. Oraevsky, S.I. Boldyrev, I.M. Kopaev, A.I. Stepanov, V.Yu. Klepikov, RESIK: high sensitivity soft X-ray spectrometer for the study of solar flare plasma, in Crossroads for European Solar and Heliospheric Physics. Recent Achievements and Future Mission Possibilities, ESA Special Publication, vol. 417 (1998), p. 313

    Google Scholar 

  31. K. Van Audenhaege, R. Van Holen, S. Vandenberghe, C. Vanhove, S.D. Metzler, S.C. Moore, Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging. Med. Phys. 42(8), 4796–4813 (2015)

    Article  Google Scholar 

  32. H.F. van Beek, C. de Jager, A. Schadee, Z. Svestka, A. Boelee, A. Duijveman, M. Galama, R. Hoekstra, P. Hoyng, R. Fryer, G.M. Simnett, J.P. Imhof, H. LaFleur, H.V.A.M. Maseland, W.M. Mels, J. Schrijver, J.J.M. van der Laan, P. van Rens, W. van Tend, F. Werkhoven, A.P. Willmore, J.W.G. Wilson, M.E. Machado, W. Zandee, The Limb Flare of 1980 April 30 as seen by the hard X-ray imaging spectrometer. Astrophys. J. Lett. 244, L157–L162 (1981)

    Article  Google Scholar 

  33. J.G. Webster (ed.), Medical Instrumentation Application and Design, 4th edn. (Wiley, Hoboken, 2010)

    Google Scholar 

  34. D.L. Windt, Advancements in hard X-ray multilayers for X-ray astronomy, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9603 (2015), p. 96031C

    Google Scholar 

  35. H. Wolter, Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen. Annalen der Physik 445(1–2), 94–114 (1952)

    Article  Google Scholar 

  36. H. Wolter, Verallgemeinerte Schwarzschildsche Spiegelsysteme streifender Reflexion als Optiken für Röntgenstrahlen. Annalen der Physik 445(4–5), 286–295 (1952)

    Article  Google Scholar 

  37. H. Wolter, Mirror systems with grazing incidence as image-forming optics for X-rays. (Translated into English from Ann. Phys. (Leipzig), ser. 6, 10, 94–114 (1952)) 10, 94–114 (1975)

    Google Scholar 

  38. Z. Zhang, D.-Y. Chen, J. Wu, J. Chang, Y.-M. Hu, Y. Su, Y. Zhang, J.-P. Wang, Y.-M. Liang, T. Ma, J.-H. Guo, M.-S. Cai, Y.-Q. Zhang, Y.-Y. Huang, X.-Y. Peng, Z.-B. Tang, X. Zhao, H.-H. Zhou, L.-G. Wang, J.-X. Song, M. Ma, G.-Z. Xu, J.-F. Yang, D. Lu, Y.-H. He, J.-Y. Tao, X.-L. Ma, B.-G. Lv, Y.-P. Bai, C.-X. Cao, Y. Huang, W.-Q. Gan, Hard X-ray imager (HXI) onboard the ASO-S mission. Res. Astron. Astrophys. 19(11), 160 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piana, M., Emslie, A.G., Massone, A.M., Dennis, B.R. (2022). X-Ray Imaging Methods. In: Hard X-Ray Imaging of Solar Flares. Springer, Cham. https://doi.org/10.1007/978-3-030-87277-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87277-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87276-2

  • Online ISBN: 978-3-030-87277-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics