Cancer statistics, 2019 - Siegel - 2019 - CA: A Cancer Journal for Clinicians - Wiley Online Library. https://acsjournals.onlinelibrary.wiley.com/doi/full/10.3322/caac.21551. Accessed 28 Feb 2021
McKinney, S.M., et al.: International evaluation of an AI system for breast cancer screening. Nature 577, 89–94 (2020). https://doi.org/10.1038/s41586-019-1799-6
Schaffter, T., et al.: Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms. JAMA Netw. Open. 3, e200265–e200265 (2020). https://doi.org/10.1001/jamanetworkopen.2020.0265
SPIE-AAPM-NCI DAIR Digital Breast Tomosynthesis Lesion Detection Challenge (DBTex). http://spie-aapm-nci-dair.westus2.cloudapp.azure.com/competitions/4. Accessed 21 Feb 2021
Buda, M., et al.: Detection of masses and architectural distortions in digital breast tomosynthesis: a publicly available dataset of 5,060 patients and a deep learning model. ArXiv201107995 Cs Eess. (2021)
Google Scholar
DBTex Challenge | SPIE Medical Imaging. https://spie.org/conferences-and-exhibitions/medical-imaging/digital-detection-challenge. Accessed 16 Feb 2021
Breast Cancer Screening - Digital Breast Tomosynthesis (BCS-DBT). https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=64685580. Accessed 16 Feb 2021
Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal Loss for Dense Object Detection. Presented at the Proceedings of the IEEE International Conference on Computer Vision (2017)
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. Presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
Google Scholar
Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature Pyramid Networks for Object Detection. Presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
Google Scholar
Lin, T.-Y., et al.: Microsoft COCO: Common Objects in Context. ArXiv14050312 Cs. (2015)
Google Scholar
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.-F.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. ArXiv160207261 Cs. (2016)
Google Scholar
Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. ArXiv191201703 Cs Stat. (2019)
Google Scholar
Ning, C., Zhou, H., Song, Y., Tang, J.: Inception Single Shot MultiBox Detector for object detection. In: 2017 IEEE International Conference on Multimedia Expo Workshops (ICMEW), pp. 549–554 (2017). https://doi.org/10.1109/ICMEW.2017.8026312
Daniel, W.W.: Biostatistics: a foundation for analysis in the health sciences. 7th edn. Wiley (1999)
Google Scholar
Stages of Breast Cancer | Understand Breast Cancer Staging. https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis/stages-of-breast-cancer.html. Accessed 22 July 2021
Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS - improving object detection with one line of code. Presented at the Proceedings of the IEEE International Conference on Computer Vision (2017)
Google Scholar
Guo, R., et al.: 2nd Place Solution in Google AI Open Images Object Detection Track 2019. ArXiv191107171 Cs. (2019)
Google Scholar
Solovyev, R., Wang, W., Gabruseva, T.: Weighted boxes fusion: ensembling boxes from different object detection models. Image Vis. Comput. 107, 104117 (2021). https://doi.org/10.1016/j.imavis.2021.104117