Skip to main content

Sequential Gaussian Process Regression for Simultaneous Pathology Detection and Shape Reconstruction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

In this paper, we view pathology segmentation as an outlier detection task. Hence no prior on pathology characteristics is needed, and we can rely solely on a statistical prior on healthy data. Our method is based on the predictive posterior distribution obtained through standard Gaussian process regression. We propose a region-growing strategy, where we incrementally condition a Gaussian Process Morphable Model on the part considered healthy, as well as a dynamic threshold, which we infer from the uncertainty remaining in the resulting predictive posterior distribution. The threshold is used to extend the region considered healthy, which in turn is used to improve the regression results. Our method can be used for detecting missing parts or pathological growth like tumors on a target shape. We show segmentation results on a range of target surfaces: mandible, cranium and kidneys. The algorithm itself is theoretically sound, straight-forward to implement and extendable to other domains such as intensity-based pathologies. Our implementation is made open source with the publication.

Code available at https://github.com/unibas-gravis/sequential-gpmm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  2. Babin, P., Giguere, P., Pomerleau, F.: Analysis of robust functions for registration algorithms. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 1451–1457. IEEE (2019)

    Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    Google Scholar 

  4. Chetverikov, D., Svirko, D., Stepanov, D., Krsek, P.: The trimmed iterative closest point algorithm. In: Object Recognition Supported by User Interaction for Service Robots, vol. 3, pp. 545–548 (2002). https://doi.org/10.1109/ICPR.2002.1047997

  5. Dufour, P.A., Abdillahi, H., Ceklic, L., Wolf-Schnurrbusch, U., Kowal, J.: Pathology hinting as the combination of automatic segmentation with a statistical shape model. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 599–606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_74

    Chapter  Google Scholar 

  6. Egger, B., Schneider, A., Blumer, C., Forster, A., Schönborn, S., Vetter, T.: Occlusion-aware 3D morphable face models. In: BMVC, vol. 2, p. 4 (2016)

    Google Scholar 

  7. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  8. Fleishman, S., Cohen-Or, D., Silva, C.T.: Robust moving least-squares fitting with sharp features. ACM Trans. Graph. (TOG) 24(3), 544–552 (2005)

    Article  Google Scholar 

  9. Gerig, T., et al.: Morphable face models-an open framework. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2018, pp. 75–82. IEEE (2018)

    Google Scholar 

  10. Heller, N., et al.: The KiTS19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. arXiv preprint arXiv:1904.00445 (2019)

  11. Hontani, H., Matsuno, T., Sawada, Y.: Robust nonrigid ICP using outlier-sparsity regularization. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 174–181. IEEE (2012)

    Google Scholar 

  12. Kemmler, M., Rodner, E., Wacker, E.S., Denzler, J.: One-class classification with Gaussian processes. Pattern Recogn. 46(12), 3507–3518 (2013)

    Article  Google Scholar 

  13. Li, J., Egger, J. (eds.): AutoImplant 2020. LNCS, vol. 12439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0

    Book  Google Scholar 

  14. Lüthi, M., Gerig, T., Jud, C., Vetter, T.: Gaussian process morphable models. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1860–1873 (2017)

    Article  Google Scholar 

  15. Morel-Forster, A., Gerig, T., Lüthi, M., Vetter, T.: Probabilistic fitting of active shape models. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 137–146. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_13

    Chapter  Google Scholar 

  16. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  17. Payer, C., Štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 54, 207–219 (2019)

    Article  Google Scholar 

  18. Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Sig. Process. 99, 215–249 (2014)

    Article  Google Scholar 

  19. Pimentel, P., et al.: Automated virtual reconstruction of large skull defects using statistical shape models and generative adversarial networks. In: Li, J., Egger, J. (eds.) AutoImplant 2020. LNCS, vol. 12439, pp. 16–27. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0_3

    Chapter  Google Scholar 

  20. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, Mass (2006)

    Google Scholar 

  21. Roth, V.: Kernel fisher discriminants for outlier detection. Neural Comput. 18(4), 942–960 (2006)

    Article  MathSciNet  Google Scholar 

  22. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  23. Schnider, E., Horváth, A., Rauter, G., Zam, A., Müller-Gerbl, M., Cattin, P.C.: 3D segmentation networks for excessive numbers of classes: distinct bone segmentation in upper bodies. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 40–49. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_5

    Chapter  Google Scholar 

  24. You, S., Tezcan, K., Chen, X., Konukoglu, E.: Unsupervised lesion detection via image restoration with a normative prior. In: International Conference on Medical Imaging with Deep Learning - Full Paper Track, London, United Kingdom, 08–10 July 2019 (2019). https://openreview.net/forum?id=S1xg4W-leV

Download references

Acknowledgments

We thank the Zurich Institute of Forensic Medicine for providing the mandible with missing teeth as an example application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Rahbani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahbani, D., Morel-Forster, A., Madsen, D., Aellen, J., Vetter, T. (2021). Sequential Gaussian Process Regression for Simultaneous Pathology Detection and Shape Reconstruction. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics