Skip to main content

Airway Anomaly Detection by Prototype-Based Graph Neural Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12905))

Abstract

Detecting the airway anomaly can be an essential part to aid the lung disease diagnosis. Since normal human airways share an anatomical structure, we design a graph prototype whose structure follows the normal airway anatomy. Then, we learn the prototype and a graph neural network from a weakly-supervised airway dataset, i.e., only the holistic label is available, indicating if the airway has anomaly or not, but which bronchus node has the anomaly is unknown. During inference, the graph neural network predicts the anomaly score at both the holistic level and node-level of an airway. We initialize the airway anomaly detection problem by creating a large airway dataset with 2589 samples, and our prototype-based graph neural network shows high sensitivity and specificity on this new benchmark dataset. The code is available at https://github.com/tznbz/Airway-Anomaly-Detection-by-Prototype-based-Graph-Neural-Network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao, T., Gao, D., Wang, J., Yin, Z.: Lung segmentation in CT images using a fully convolutional neural network with multi-instance and conditional adversary loss. In: ISBI, pp. 505–509 (2018)

    Google Scholar 

  2. Ding, J., Li, A., Hu, Z., Wang, L.: Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 559–567. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_64

    Chapter  Google Scholar 

  3. Jin, D., Xu, Z., Harrison, A.P., George, K., Mollura, D.J.: 3D convolutional neural networks with graph refinement for airway segmentation using incomplete data labels. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 141–149. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_17

    Chapter  Google Scholar 

  4. Garcia-Uceda Juarez, A., Tiddens, H.A.W.M., de Bruijne, M.: Automatic airway segmentation in chest CT using convolutional neural networks. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA -2018. LNCS, vol. 11040, pp. 238–250. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00946-5_24

    Chapter  Google Scholar 

  5. Meng, Q., Roth, H.R., Kitasaka, T., Oda, M., Ueno, J., Mori, K.: Tracking and segmentation of the airways in chest CT using a fully convolutional network. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 198–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_23

    Chapter  Google Scholar 

  6. Yun, J., et al.: Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net. Med. Image Anal. (MedIA) 51, 13–20 (2019)

    Article  Google Scholar 

  7. Zhao, T., Yin, Z., Wang, J., Gao, D., Chen, Y., Mao, Y.: Bronchus segmentation and classification by neural networks and linear programming. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 230–239. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_26

    Chapter  Google Scholar 

  8. Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38, 915–931 (2011)

    Article  Google Scholar 

  9. Bartholmai, B., Karwoski, R., Zavaletta, V., Robb, R., Holmes, D.R.I.: The Lung Tissue Research Consortium: an extensive open database containing histological, clinical, and radiological data to study chronic lung disease. In: MICCAI Open Science Workshop (2006)

    Google Scholar 

  10. Clark, K., et al.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  11. Vyas, A., Jammalamadaka, N., Zhu, X., Das, D., Kaul, B., Willke, T.L.: Out-of-distribution detection using an ensemble of self supervised leave-out classifiers. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 560–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_34

    Chapter  Google Scholar 

  12. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: ICLR (2017)

    Google Scholar 

  13. Eskin, E.: Anomaly detection over noisy data using learned probability distributions. In: ICML (2000)

    Google Scholar 

  14. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  15. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  16. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  17. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.-G.: Pixel2Mesh: generating 3D mesh models from single RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 55–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_4

    Chapter  Google Scholar 

  18. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. arXiv preprint arXiv:1706.02216 (2017)

  19. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. arXiv preprint arXiv:1806.08804 (2018)

  20. Huang, J., Li, Z., Li, N., Liu, S., Li, G.: AttPool: towards hierarchical feature representation in graph convolutional networks via attention mechanism. In: ICCV, pp. 6480–6489 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaozheng Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, T., Yin, Z. (2021). Airway Anomaly Detection by Prototype-Based Graph Neural Network. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics