Skip to main content

Categorical Relation-Preserving Contrastive Knowledge Distillation for Medical Image Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12905))

Abstract

The amount of medical images for training deep classification models is typically very scarce, making these deep models prone to overfit the training data. Studies showed that knowledge distillation (KD), especially the mean-teacher framework which is more robust to perturbations, can help mitigate the over-fitting effect. However, directly transferring KD from computer vision to medical image classification yields inferior performance as medical images suffer from higher intra-class variance and class imbalance. To address these issues, we propose a novel Categorical Relation-preserving Contrastive Knowledge Distillation (CRCKD) algorithm, which takes the commonly used mean-teacher model as the supervisor. Specifically, we propose a novel Class-guided Contrastive Distillation (CCD) module to pull closer positive image pairs from the same class in the teacher and student models, while pushing apart negative image pairs from different classes. With this regularization, the feature distribution of the student model shows higher intra-class similarity and inter-class variance. Besides, we propose a Categorical Relation Preserving (CRP) loss to distill the teacher’s relational knowledge in a robust and class-balanced manner. With the contribution of the CCD and CRP, our CRCKD algorithm can distill the relational knowledge more comprehensively. Extensive experiments on the HAM10000 and APTOS datasets demonstrate the superiority of the proposed CRCKD method. The source code is available at https://github.com/hathawayxxh/CRCKD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  2. Yang, C., Xie, L., Su, C., Yuille, A.L.: Snapshot distillation: teacher-student optimization in one generation. In: Proceedings of the CVPR, pp. 2859–2868 (2019)

    Google Scholar 

  3. Zhuang, J., Cai, J., Wang, R., Zhang, J., Zheng, W.-S.: Deep kNN for medical image classification. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 127–136. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_13

    Chapter  Google Scholar 

  4. Cheplygina, V., de Bruijne, M., Pluim, J.P.: Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med. Image Anal. 54, 280–296 (2019)

    Article  Google Scholar 

  5. Shang, H., et al.: Leveraging other datasets for medical imaging classification: evaluation of transfer, multi-task and semi-supervised learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 431–439. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_48

    Chapter  Google Scholar 

  6. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the CVPR, pp. 2818–2826 (2016)

    Google Scholar 

  8. Müller, R., Kornblith, S., Hinton, G.: When does label smoothing help? arXiv preprint arXiv:1906.02629 (2019)

  9. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  10. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)

    Google Scholar 

  11. Thiagarajan, J.J., Kashyap, S., Karargyris, A.: Distill-to-label: weakly supervised instance labeling using knowledge distillation. In: 2019 18th IEEE International Conference on Machine Learning And Applications (ICMLA), pp. 902–907. IEEE (2019)

    Google Scholar 

  12. Wu, J., et al.: Leveraging undiagnosed data for glaucoma classification with teacher-student learning. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 731–740. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_71

    Chapter  Google Scholar 

  13. Liu, Q., Yu, L., Luo, L., Dou, Q., Heng, P.A.: Semi-supervised medical image classification with relation-driven self-ensembling model. IEEE Trans. Med. Imaging 39, 3429–3440 (2020)

    Article  Google Scholar 

  14. Unnikrishnan, B., Nguyen, C.M., Balaram, S., Foo, C.S., Krishnaswamy, P.: Semi-supervised classification of diagnostic radiographs with noteacher: a teacher that is not mean. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 624–634. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_61

    Chapter  Google Scholar 

  15. Abbasi, S., et al.: Classification of diabetic retinopathy using unlabeled data and knowledge distillation. arXiv preprint arXiv:2009.00982 (2020)

  16. Patra, A., et al.: Efficient ultrasound image analysis models with sonographer gaze assisted distillation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 394–402. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_43

    Chapter  Google Scholar 

  17. Hou, Y., Ma, Z., Liu, C., Loy, C.C.: Learning lightweight lane detection CNNs by self attention distillation. In: Proceedings of the ICCV, pp. 1013–1021 (2019)

    Google Scholar 

  18. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: Proceedings of the ICCV, pp. 1365–1374 (2019)

    Google Scholar 

  19. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. arXiv preprint arXiv:1910.10699 (2019)

  20. Saunshi, N., Plevrakis, O., Arora, S., Khodak, M., Khandeparkar, H.: A theoretical analysis of contrastive unsupervised representation learning. In: International Conference on Machine Learning, pp. 5628–5637 (2019)

    Google Scholar 

  21. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the CVPR, pp. 3733–3742 (2018)

    Google Scholar 

  22. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Proceedings of the CVPR, pp. 3967–3976 (2019)

    Google Scholar 

  23. Tschandl, P., Rosendahl, C., Kittler, H.: The HAN10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 (2018)

    Article  Google Scholar 

  24. Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: Proceedings of the ISBI, pp. 168–172. IEEE (2018)

    Google Scholar 

  25. Aptos 2019 blindness detection. https://www.kaggle.com/c/aptos2019-blindness-detection/data

  26. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the CVPR, pp. 4700–4708 (2017)

    Google Scholar 

  27. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: Proceedings of the CVPR, pp. 4133–4141 (2017)

    Google Scholar 

  28. Yan, Y., Kawahara, J., Hamarneh, G.: Melanoma recognition via visual attention. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 793–804. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_62

    Chapter  Google Scholar 

  29. Zhang, J., Xie, Y., Wu, Q., Xia, Y.: Skin lesion classification in dermoscopy images using synergic deep learning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 12–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_2

    Chapter  Google Scholar 

  30. Zhang, J., Xie, Y., Xia, Y., Shen, C.: Attention residual learning for skin lesion classification. IEEE Trans. Med. Imaging 38(9), 2092–2103 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by National Key R&D program of China with Grant No. 2019YFB1312400, Hong Kong RGC CRF grant C4063-18G, and Hong Kong RGC GRF grant #14211420.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yixuan Yuan or Max Q.-H. Meng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1027 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xing, X., Hou, Y., Li, H., Yuan, Y., Li, H., Meng, M.QH. (2021). Categorical Relation-Preserving Contrastive Knowledge Distillation for Medical Image Classification. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics