Skip to main content

Hierarchical Attention Guided Framework for Multi-resolution Collaborative Whole Slide Image Segmentation

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12908)

Abstract

Segmentation of whole slide images (WSIs) is an important step for computer-aided cancer diagnosis. However, due to the gigapixel dimension, WSIs are usually cropped into patches for analysis. Processing high-resolution patches independently may leave out the global geographical relationships and suffer slow inference speed while using low-resolution patches can enlarge receptive fields but lose local details. Here, we propose a Hierarchical Attention Guided (HAG) framework to address above problems. Particularly, our framework contains a global branch and several local branches to perform prediction at different scales. Additive hierarchical attention maps are generated by the global branch with sparse constraints to fuse multi-resolution predictions for better segmentation. During the inference, the sparse attention maps are used as the certainty guidance to select important local areas with a quadtree strategy for acceleration. Experimental results on two WSI datasets highlight two merits of our framework: 1) effectively aggregate multi-resolution information to achieve better results, 2) significantly reduce the computational cost to accelerate the prediction without decreasing accuracy.

Keywords

  • Segmentation
  • Whole slide image
  • Deep Learning
  • Acceleration

J. Yan, H. Chen and K. Wang—contributed equally

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    CrossRef  Google Scholar 

  2. Chaurasia, A., Culurciello, E.: Linknet: exploiting encoder representations for efficient semantic segmentation. In: Proceedings of the IEEE Visual Communications and Image Processing, pp. 1–4 (2017)

    Google Scholar 

  3. Tosun, A.B., et al.: Histological detection of high-risk benign breast lesions from whole slide images. In: Descoteaux, M., et al. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 144–152. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_17

    CrossRef  Google Scholar 

  4. Chen, H., Qi, X., Yu, L., Dou, Q., Qin, J., Heng, P.A.: Dcan: deep contour-aware networks for object instance segmentation from histology images. Med. Image Anal. 36, 135–146 (2017)

    CrossRef  Google Scholar 

  5. Cong, W.M., et al.: Practice guidelines for the pathological diagnosis of primary liver cancer: 2015 update. World J. Gastroenterol. 22(42), 9279 (2016)

    CrossRef  Google Scholar 

  6. Dong, N., et al.: Reinforced auto-zoom net: towards accurate and fast breast cancer segmentation in whole-slide images. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 317–325. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_36

    CrossRef  Google Scholar 

  7. Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval on composite keys. Acta Informatica 4(1), 1–9 (1974)

    CrossRef  Google Scholar 

  8. Gu, F., Burlutskiy, N., Andersson, M., Wilén, L.K.: Multi-resolution networks for semantic segmentation in whole slide images. In: Stoyanov, D., et al. (eds.) OMIA/COMPAY -2018. LNCS, vol. 11039, pp. 11–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00949-6_2

    CrossRef  Google Scholar 

  9. Harrold, I.M., Bean, S.M., Williams, N.C.: Emerging from the basement: the visible pathologist. Arch. Pathol. Laboratory Med. 143(8), 917–918 (2019)

    CrossRef  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Ioannou, N., et al.: Accelerated ML-assisted tumor detection in high-resolution histopathology images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 406–414. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_45

    CrossRef  Google Scholar 

  12. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  13. Mehta, S., Mercan, E., Bartlett, J., Weaver, D., Elmore, J.G., Shapiro, L.: Y-Net: joint segmentation and classification for diagnosis of breast biopsy images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 893–901. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_99

    CrossRef  Google Scholar 

  14. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019)

    Google Scholar 

  15. Qu, H., Yan, Z., Riedlinger, G.M., De, S., Metaxas, D.N.: Improving nuclei/gland instance segmentation in histopathology images by full resolution neural network and spatial constrained loss. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 378–386. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_42

    CrossRef  Google Scholar 

  16. van Rijthoven, M., Balkenhol, M., Siliņa, K., van der Laak, J., Ciompi, F.: Hooknet: multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images. Med. Image Anal. 68, 101890 (2021)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    CrossRef  Google Scholar 

  18. Schmitz, R., et al.: Multi-scale fully convolutional neural networks for histopathology image segmentation: from nuclear aberrations to the global tissue architecture. Med. Image Anal. 70, 101996 (2021)

    Google Scholar 

  19. Tokunaga, H., Teramoto, Y., Yoshizawa, A., Bise, R.: Adaptive weighting multi-field-of-view CNN for semantic segmentation in pathology. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12597–12606 (2019)

    Google Scholar 

  20. Wang, Y., et al.: Double-uncertainty weighted method for semi-supervised learning. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 542–551. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_53

  21. Yan, J., Chen, S., Zhang, Y., Li, X.: Neural architecture search for compressed sensing magnetic resonance image reconstruction. Comput. Med. Imaging Graph. 85, 101784 (2020)

    Google Scholar 

  22. Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med. Image Anal. 65, 101789 (2020)

    Google Scholar 

Download references

Acknowledgement

This research was partly supported by the National Natural Science Foundation of China (Grant No. 41876098), the National Key R&D Program of China (Grant No. 2020AAA0108303), and Shenzhen Science and Technology Project (Grant No. JCYJ20200109143041798).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuqun Cheng , Xiu Li or Jianhua Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, J. et al. (2021). Hierarchical Attention Guided Framework for Multi-resolution Collaborative Whole Slide Image Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12908. Springer, Cham. https://doi.org/10.1007/978-3-030-87237-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87237-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87236-6

  • Online ISBN: 978-3-030-87237-3

  • eBook Packages: Computer ScienceComputer Science (R0)