Skip to main content

Text2Brain: Synthesis of Brain Activation Maps from Free-Form Text Query

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12907)

Abstract

Most neuroimaging experiments are under-powered, limited by the number of subjects and cognitive processes that an individual study can investigate. Nonetheless, over decades of research, neuroscience has accumulated an extensive wealth of results. It remains a challenge to digest this growing knowledge base and obtain new insights since existing meta-analytic tools are limited to keyword queries. In this work, we propose Text2Brain, a neural network approach for coordinate-based meta-analysis of neuroimaging studies to synthesize brain activation maps from open-ended text queries. Combining a transformer-based text encoder and a 3D image generator, Text2Brain was trained on variable-length text snippets and their corresponding activation maps sampled from 13,000 published neuroimaging studies. We demonstrate that Text2Brain can synthesize anatomically-plausible neural activation patterns from free-form textual descriptions of cognitive concepts. Text2Brain is available at https://braininterpreter.com as a web-based tool for retrieving established priors and generating new hypotheses for neuroscience research.

Keywords

  • Coordinate-based meta-analysis
  • Transformers
  • Information retrieval
  • Image generation

G. H. Ngo and M. Nguyen—Equal contribution. N. F. Chen and M. R. Sabuncu—Equal contribution.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-87234-2_57
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-87234-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. 1.

    https://www.ncbi.nlm.nih.gov/books/NBK25501/.

  2. 2.

    https://dev.elsevier.com/.

References

  1. Carp, J.: The secret lives of experiments: methods reporting in the fMRI literature. Neuroimage 63(1), 289–300 (2012)

    CrossRef  Google Scholar 

  2. Button, K.S., et al.: Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14(5), 365–376 (2013)

    CrossRef  Google Scholar 

  3. Church, J.A., Petersen, S.E., Schlaggar, B.L.: The “Task B problem’’ and other considerations in developmental functional neuroimaging. Hum. Brain Mapp. 31(6), 852–862 (2010)

    CrossRef  Google Scholar 

  4. Costafreda, S.G., Brammer, M.J., David, A.S., Fu, C.H.Y.: Predictors of amygdala activation during the processing of emotional stimuli: a meta-analysis of 385 pet and FMRI studies. Brain Res. Rev. 58(1), 57–70 (2008)

    CrossRef  Google Scholar 

  5. Minzenberg, M.J., Laird, A.R., Thelen, S., Carter, C.S., Glahn, D.C.: Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch. Gen. Psychiatry 66(8), 811–822 (2009)

    CrossRef  Google Scholar 

  6. Shackman, A.J., Salomons, T.V., Slagter, H.A., Fox, A.S., Winter, J.J., Davidson, R.J.: The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 12(3), 154–167 (2011)

    CrossRef  Google Scholar 

  7. Smallwood, J.: Distinguishing how from why the mind wanders: a process-occurrence framework for self-generated mental activity. Psychol. Bull. 139(3), 519 (2013)

    CrossRef  MathSciNet  Google Scholar 

  8. Andrews-Hanna, J.R., Smallwood, J., Spreng, R.N.: The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316(1), 29 (2014)

    CrossRef  Google Scholar 

  9. Yarkoni, T., Poldrack, R.A., Nichols, T.E., Van Essen, D.C., Wager, T.D.: Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8(8), 665–670 (2011)

    CrossRef  Google Scholar 

  10. Dockès, J., et al.: NeuroQuery, comprehensive meta-analysis of human brain mapping. Elife 9, e53385 (2020)

    CrossRef  Google Scholar 

  11. Rubin, T.N., Koyejo, O., Gorgolewski, K.J., Jones, M.N., Poldrack, R.A., Yarkoni, T.: Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition. PLoS Comput. Biol. 13(10), e1005649 (2017)

    CrossRef  Google Scholar 

  12. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

  13. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  14. Tenney, I., et al.: What do you learn from context? Probing for sentence structure in contextualized word representations. arXiv preprint arXiv:1905.06316 (2019)

  15. Petroni, F., et al.: Language models as knowledge bases? In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2463–2473 (2019)

    Google Scholar 

  16. Lancaster, J.L., et al.: Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum. Brain Mapp. 28(11), 1194–1205 (2007)

    CrossRef  Google Scholar 

  17. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. arXiv preprint arXiv:1903.10676 (2019)

  18. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: Proceedings of ICLR (2018)

    Google Scholar 

  19. Barch, D.M., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013)

    CrossRef  Google Scholar 

  20. Pinho, A.L., et al.: Individual brain charting dataset extension, second release of high-resolution fMRI data for cognitive mapping. Sci. Data 7(1), 1–16 (2020)

    CrossRef  MathSciNet  Google Scholar 

  21. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24(5), 513–523 (1988)

    CrossRef  Google Scholar 

  22. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    CrossRef  Google Scholar 

  23. Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L.: The brain’s default network: anatomy, function, and relevance to disease (2008)

    Google Scholar 

  24. Ngo, G.H., et al.: Beyond consensus: embracing heterogeneity in curated neuroimaging meta-analysis. Neuroimage 200, 142–158 (2019)

    CrossRef  Google Scholar 

  25. Turkeltaub, P.E., Eden, G.F., Jones, K.M., Zeffiro, T.A.: Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16(3), 765–780 (2002)

    CrossRef  Google Scholar 

  26. Laird, A.R., et al.: ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum. Brain Mapp. 25(1), 155–164 (2005)

    CrossRef  Google Scholar 

  27. Eickhoff, S.B., Laird, A.R., Grefkes, C., Wang, L.E., Zilles, K., Fox, P.T.: Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 30(9), 2907–2926 (2009)

    CrossRef  Google Scholar 

  28. Spreng, R.N., Mar, R.A., Kim, A.S.N.: The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21(3), 489–510 (2009)

    CrossRef  Google Scholar 

  29. Mar, R.A.: The neural bases of social cognition and story comprehension. Annu. Rev. Psychol. 62, 103–134 (2011)

    CrossRef  Google Scholar 

  30. Sevinc, G., Spreng, R.N.: Contextual and perceptual brain processes underlying moral cognition: a quantitative meta-analysis of moral reasoning and moral emotions. PLoS ONE 9(2), e87427 (2014)

    CrossRef  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grants R01LM012719, R01AG053949, the NSF NeuroNex grant 1707312, the NSF CAREER 1748377 grant and Jacobs Scholar Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gia H. Ngo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1347 KB)

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ngo, G.H., Nguyen, M., Chen, N.F., Sabuncu, M.R. (2021). Text2Brain: Synthesis of Brain Activation Maps from Free-Form Text Query. In: , et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87234-2_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87233-5

  • Online ISBN: 978-3-030-87234-2

  • eBook Packages: Computer ScienceComputer Science (R0)